USE OF DRONES AND HYPERSPECTRAL IMAGERY TO REMOTELY SENSE VEGETATION PATTERNS AT WETLAND RESTORATION SITES

COLUMBIA RIVER ESTUARY CONFERENCE

> April 2018 Astoria, OR

ROBERT ERDT, JOE ÅGA, RYKAØUAS GEORGE PIERCE

EVALUATION OF RESTORATION PROJECTS

- 1. EACH RESTORATION PROJECT IS ESSENTIALLY AN EXPERIMENT WITH ITS OWN PARTICULAR VARIABLES:
 - 1. HISTORY/AGE
 - 2. FORCING FUNCTIONS (HYDRAULIC REACH)
 - 3. DESIRE OUTCOME / GOALS
- 2. HYDROLOGY AND LANDSCAPE SO ALTERED THAT THERE IS NO GOING BACK TO PAST CONDITIONS
 - 1. FRESHET/ DISTURBANCE, SEDIMENTATION LEVELS ALL REDUCED AND TIMING CHANGED
- ECOLOGICAL ENGINEERING REQUIRES POST-RESTORATION EVALUATIONS TO DETERMINE RESTORATION TRAJECTORIES
 - 1. TIME SERIES DATA OF KEY METRICS FOR CHANGE ANALYSIS AND ADAPTIVE MANAGEMENT
 - ✓ HYDROLOGICAL DATA
 - □ FISH HABITAT UTILIZATION --PIT/ACOUSTIC TAGS
 - VEGETATION FROM TRANSECT T REMOTE SENSING

MONITORING RESTORATION TRAJECTORIES

KEY METRICS:

□ STRUCTURAL

- TIDAL CHANNEL GEOMETRY
- TOPOGRAPHY
- ✓ VEGETATION COMMUNITY
 - SALMO -CENTRIC: PREY PRODUCTION
- EQUIP A DRONE SYSTEM WITH A HYPERSPECTRAL IMAGER AND DEVELOP METHODS TO MEASURE RESTORATION TRAJECTORIES.

PRINCIPALS OF HYPERSPECTRAL IMAGERY

 $\frac{HYPERSPECTRAL DATACUBE}{(SPATIAL PIXELS) * SPECTRAL CHANNELS} (X * Y) * \lambda$

SPECTRAL SIGNATURES USED FOR OBJECT IDENTIFICATION

PRINCIPLES OF REMOTE SENSING - CENTRE FOR REMOTE IMAGING, SENSING

...WWW.CRISP.NUS.EDU.SG

PROJECT GOALS

- 1. EQUIP AND TEST A UAV SYSTEM WITH A HYPERSPECTRAL IMAGER.
- 2. CONDUCT FIELD MEASUREMENTS, AND BUILD SPECTRAL LIBRARY
- DEVELOP DATA ANALYSIS
 ROUTINES AND ANALYTICS FOR
 CRITICAL METRICS.
- 4. TEST PROCEDURES AT OTHER FIELD SITES

COLEWORT CREEK NATIONAL HISTORICAL PARK

Hyperspectral Camera Characteristics

- BaySpec OCI-100 BP150
 - Pushbroom Hyperspectral Imager
 - Spatial Pixels: 2000 pix x scan-length
 - Spectral Range: 450-970nm
 - Spectral Resolution: 5nm
 - Spectral Bands: 104
 - Speed: 120 fps

SPECTRAL LIBRARY

CATALOG OF OBJECT-SPECIFIC SPECTRA

DATA ACQUISITION

SPECTRAL SIGNATURES OF VEGETATION AND TOPOGRAPHIC FEATURES:

SPECTRAL SIGNATURES OF KEY VEGETATION TYPES

COLEWORT CREEK GROUND TRUTH STATIONS

AUTOMATION OF OBJECT IDENTIFICATION

OUTPUT (CATEGORIZED MAPS & STATISTICS)

Hyperspectral Processing: Colewort Creek NHP test site

Example Hyperspectral Classification

True Color (RGB)

Dead Typha latifolia (common cattail)

Carex lyngbyei (Lyngby sedge)

Eleocharis palustris (Common spikerush)

Bare Ground & 20% Eleocharis palustris (Common spikerush)

UAS Hyperspectral Veg Classification

UTILITY

- 1. MAPPING HABITATS
- 2. **RESTORATION TRAJECTORY**
- 3. TIDAL CHANNEL EVOLUTION
- 4. INVASIVE MONITORING
- 5. SPATIAL MODELING
- 6.OTHERS!

RGB True Color Classification

Limited spectral information in RGB data leads to poor discrimination in classification

Orthophotogammetry

KARLSON

Day of year 201

COLEWORT

STEAMBOAT

NOAA UAS PROJECT

KARLSON

OTHER APPLICATIONS

ALGAL BLOOMS

BIRD COLONIES & SEA LION HAUL-OUTS

SEAGRASSES// Oyster culture

