Enhancement of Cold Water Sources for Salmon Refuge in the lower Columbia River Gorge: A 3D Hydrodynamic Modeling Assessment

¹Keith Marcoe, Chris Collins, Catherine Corbett ²Mike Burke

Background

• Year 3 of an ongoing, EPA-funded study of cold water inputs to the lower Columbia River

2017 - 2018

- Plume enhancement feasibility study for lower Gorge tributaries
 Rationale:
 - Extensive salmon use of man-made, cold water embayments at mid-Columbia tributary confluences:

Question

Can we alter the hydrodynamics around existing cold water sources in the lower Columbia River Gorge to create suitable refuges for summer migrating salmon, similar to those found upstream?

Future aspects: sea level rise, cost, geomorphic analysis, social considerations

Challenges

Typical <u>mid-Columbia</u> tributary summer discharges:

- Little White Salmon River (Drano Lake): ~ 190 cfs
- Herman Creek: ²20 30 cfs

Typical <u>lower Gorge</u> tributary summer discharges:

- ³1 – 15 cfs

At these low discharges, can lower Gorge tributaries form cold water plumes of adequate size to be used as refuge by migrating salmon?

Data sources:

1. Volume of Cold Water Refuge Associated with 26 tributaries providing CWR in the lower Columbia River. US EPA draft technical memorandum. Dec. 2017

2. Temperature Characteristics of Herman Creek Cove and its Function as a Cool-Water Refuge for Adult Salmon and Steelhead in the Columbia R. Cramer Fish Sciences, 2007.

3. LCEP 2015 Cold Water Refuge monitoring study.

Plume Assessment Method

Considerations:

- small tributary discharges small plume outlines
- capture vertical temperature profile over water column due to temperature/density relationship
- assess multiple stream outlet/structure orientations

include atmospheric effects (radiation, air temperature, clouds, precipitation, wind)

Approach:

3D hydrodynamic model with advection/dispersion module + atmospheric inputs

Tributary Selection

cold, adequate discharge, accessible to adult/juvenile salmonids

Derivation of 0.5 m depth contours for Bridal Veil Creek

Relevant depth contours for salmon migration:							
0.5 m (juvenile)	2m depth (adult)	10m depth (adult)					
WSEmax	WSEmax	WSEmax					
WSEmin	WSEmin	WSEmin					
WSEmax WSEmin	WSEmax WSEmin	WSEmax WSEmin					

Model Engine

Tuflow FV: finite volume, 3D numerical model (hydrodynamics) **Tuflow AD**: advection/dispersion module for FV (water temperature)

TUFLOW FV	TUFLOW FV Modules					
Overview Background Features	AD Module ST Module 3D Module WQ Module					
<text><text><list-item><list-item><list-item><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></list-item></list-item></list-item></text></text>	<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></section-header></section-header>					

Physical Model

Atmospheric inputs applied globally:

- solar radiation
- air temperature, relative humidity
- cloud cover
- precipitation
- wind

Columbia R.

- stage
- temperature

- Multnomah Cr.
- temperature

- Q

Bridal Veil Cr. - Q - temperature Columbia R. - discharge (Q) - temperature

bed elevation (m)

6.0 4.0 2.0 0.0 -2.0 -4.0 -6.0 -8.0 -10.0

Horsetail Cr.

- temperature

- Q

10 km

Model Resolution

Horizontal (~ 3m)

Vertical (< 1m)

3D model: results for each z-layer 2D model: single, depth averaged result **Model Boundary Data Selection**

- Period of interest for salmonids: July August
- Selected year: 2008
 - Available water surface elevation data at Sand Island (downstream boundary)
 - Good representation of average conditions:

Model Boundary Data Selection

 Water surface elevation (WSE) during summer period of interest (July – August)

Informs design elevation range for structures

Model Boundary Inputs

Sample time period:

	Colur	nbia R.	Trik	outary	Q	Tributary temp.				Atmospheric Inputs							
time	WL (m)	Q (kcfs)	Qbv (cfs)	Qm (cfs)	Qht (cfs)	Tcol	Tbv	Tm	Tht	AIR_TEMP	CLOUD	LW_RAD	PRECIP	REL_HUM	SW_RAD	Wx	Wy
8/3/08 4:00	4.0	175.4	11.7	8.7	4.7	20.7	12.0	14.2	17.3	11.1	0.8	300	0.00	0.89	300	3.1	0
8/3/08 5:00	4.0	176.5	11.7	8.7	4.7	20.6	11.8	14.1	17.3	11.7	0.8	310	0.00	0.89	350	0.0	0
8/3/08 6:00	4.0	157.5	11.7	8.7	4.7	20.5	11.7	14.0	17.2	12.2	0.8	320	0.00	0.86	400	1.6	0
8/3/08 7:00	3.9	123.1	11.7	8.7	4.7	20.4	11.7	14.0	17.2	12.2	0.8	330	0.00	0.86	450	0.0	0
8/3/08 8:00	3.9	120.9	11.7	8.7	4.7	20.5	11.7	13.8	17.2	12.2	0.8	340	0.00	0.86	500	1.6	0
8/3/08 9:00	4.0	120.9	11.7	8.7	4.7	20.5	11.7	13.8	17.0	12.8	0.8	350	0.00	0.83	550	1.6	0
8/3/08 10:00	4.0	120.9	11.6	8.6	4.6	20.6	11.8	13.8	17.0	13.3	0.8	360	0.00	0.8	600	0.0	0
8/3/08 11:00	3.9	119.2	11.6	8.6	4.6	20.6	12.0	13.8	17.2	13.9	0.8	370	0.00	0.77	650	3.1	0
8/3/08 12:00	3.9	118.8	11.6	8.6	4.6	20.8	12.2	13.8	17.0	15.0	0.8	370	0.00	0.69	658	4.6	0
8/3/08 13:00	3.8	118.7	11.6	8.6	4.6	20.9	12.7	14.2	17.3	16.7	0.8	380	0.00	0.65	658	5.6	0
8/3/08 14:00	3.7	118.7	11.6	8.6	4.6	21.2	13.3	14.3	17.6	18.9	0.3	382	0.00	0.56	658	6.7	0
8/3/08 15:00	3.7	118.6	11.6	8.6	4.6	21.3	13.7	14.5	17.9	20.0	0	382	0.00	0.52	658	6.7	0
8/3/08 16:00	3.6	120.0	11.6	8.6	4.6	21.4	13.8	14.7	18.2	21.7	0	360	0.00	0.49	650	7.7	0

Sources:

WL: LCEP/PNL Q: Fish Passage Center LCEP estimated LCEP measured

radiation: standard curves weather: Troutdale, OR station **Boundary Forcing Variability**

Daily variations in boundary forcing elements can have significant effects on plume characteristics

Model Validation

- Rough comparison of observed vs. simulated plume extents
- Dates (and therefore temperature ranges) differ for observed versus simulated results, but we found generally good agreement for plume extents.
- Model time steps selected for comparison were chosen based on best combination of parameters at time of observations (time of day, river stage, atmospheric conditions).

Model Validation

Stream confluence

Bridal Veil (@surface)

Multnomah (@ surface)

Multnomah (@ max. depth)

Results

 Current analysis assumes solid (non-permeable) diversion structures. Actual structure types TBD based on future analysis.

- Use existing landforms to inform structure placement and help minimize constructed lengths.
- Focus on water temperatures at depth. More likely to be used by adult salmonids.

Existing condition

Flow trace

2 m depth contour range

full structures

full structures, perpendicular

- 2 m depth contour range
 - structure placement

excavate to 2m depth min.

existing

US structure

US perpendicular

full structures

Plume characteristics are dynamic

- Relative contributions from:
 - Columbia River forcing (discharge and temperature)
 - atmospheric forcing (temperature, clouds, rain, wind)

 Not a direct correlation to Columbia R. discharge at Horsetail plume. Other factors contributing.

Does DS structure enhance plume? <u>Maybe</u>, if wind is factored in:

Largest differences during late day (maximum wind velocities) Stronger west winds enhance plume? Needs more analysis..

Results - Multnomah Creek

Existing condition

Flow trace

2 m depth contour range

Results - Multnomah Creek

Full structures

- 2 m depth contour range
 - structure placement

West channel: full structures

Results - Multnomah Creek, east outlet

a: existing

c: full (US+DS)

difference: c - a temp. diff. (C)

Results - Multnomah Creek, west outlet

a: no structures

b: DS

Results – Bridal Veil Creek

Flow trace

2 m depth contour @ maximum WSE for analysis period

Results – Bridal Veil Creek

North channel: full structures, increase area

2 m depth contour @ maximum WSE for analysis period

structure placement

Results – Bridal Veil Creek, east outlet

a: existing

c: full (US+DS)

b: US

difference: c - a diff: full - existing

Results – Bridal Veil Creek, north outlet

a: no structures

c: full (US+DS)

d: full, increased area

Relative Plume Size Comparison

- mid Columbia refuges:
 Eagle Creek: ~ 5,000 m²
 Herman Creek: ~ 80,000 m²
- lower Columbia modeled *initial plume estimates: Horsetail Creek: ~ 5,000 m² Multnomah Creek: ~ 25,000 m² Bridal Veil Creek: ~ 20,000 – 30,000 m² total: ~ 50,000 - 60,000 m²

*plumes can likely be made larger, but cost must be considered

Plume optimization

• Using length as a proxy for cost, can do a rough optimization of plume sizes based on model results:

	simulation	total structure length (m)	maximum plume area (m^2)	length/area
Horsetail/ Oneonta	US	120	4,100	0.029
	US perp.	70	2,090	0.033
	US full	170	4,100	0.041
Multnomah/W ahkeena	east channel: US	150	5,100	0.029
	east channel: full	230	12,350	0.019
	north channel: full	280	11,600	0.024
	north channel full extended	400	24,200	0.017
	west channel: DS	180	3,670	0.049
	west channel: full	320	18,800	0.017
Bridal Veil	east channel: US	215	11,300	0.019
	east channel: full	290	13,000	0.022
	west channel: DS	80	1,300	0.062
	west channel: full	160	7,000	0.023
	west channel: full extended	300	23,400	0.013

Conclusions

- Based on model analysis, existing lower Columbia Gorge tributary confluences could provide effective summer refuge for migrating salmonids, with enhancement.
- Sizes of created refuges in the lower Gorge would be comparable to those of existing mid-Columbia refuges with documented salmonid use.
- Structures are needed to divert mainstem flows. Existing landforms are not enough by themselves
- Plume characteristics (size and temperature) are highly dynamic due to multiple forcing factors (discharges, water temperatures, atmospheric effects)

Questions...

Keith Marcoe Lower Columbia Estuary Partnership (503) 226-1565, Ext.230 kmarcoe@estuarypartnership.org

