Indirect benefits of habitat restoration on juvenile salmon*: results from the and flux landscape-scale action effectiveness study

Laurie Weitkamp, Kym Jacobson, Brian Beckman, Don Van Doornik, Kurt Fresh, Curtis Roegner Northwest Fisheries Science Center, NOAA Fisheries Angelica Munguia and Jessica Miller Oregon State University

*Includes steelhead

Today's talk

- Background on the Action Effectiveness Monitoring and Research (AEMR) project
- Study components

- Methods and results from the landscape-scale study
- Methods and results from the flux study
- Summary and conclusions

Columbia Estuary Ecosystem Restoration Program (CEERP)

Stated goal

"To undertake the activities necessary to evaluate, protect, monitor, and restore fish and wildlife habitat in the Columbia River estuary" (rkm 0–234)

Under CEERP, BPA and USACE have restored 1,000s of acres of tidal marsh habitat

Key Question: Are the estuary habitat restoration actions achieving expected biological and environmental benefits?

Is the Columbia River estuary a "pipe" for interior stocks of salmon?

The old paradigm:

As interior juvenile salmon move through the estuary, they don't:

- Feed
- Grow
- Slow or stop

Is this true?

Action Effectiveness Monitoring & Research (AEMR) Project

- Funded by U.S. Army Corps of Engineers
 - Two field seasons (2016, 2017), final report (2019)

• Addresses the question:

Does marsh habitat restoration in the Columbia River estuary benefit juvenile salmon, especially interior stocks?

- Four integrated components:
 - Landscape-scale
 - Flux
 - Site-scale
 - Fish detections
- Common suite of fish and habitat metrics
 - Study components directly comparable

Two field years (2016 and 2017) were very different

Project Components

- Landscape Scale Investigate the effectiveness of habitat 1) restoration on interior juvenile salmon at the landscape scale (outside wetlands). (indirect benefits)
- **Flux Study** Quantify the export of material out of wetlands 2) to the mainstem (carbon, nutrients, insects)
- 3)
- restoration actions at the site of detection actions at the site of detection detection actions at the site of detect interior stocks entering/e of marsh habitats (direct use) 4)

Conceptual model: Prey production in restored tidal wetlands benefit juvenile salmon directly onsite and indirectly offsite

<u>Direct benefits</u>: Restored tidal wetlands provide refuge and prey resources for juvenile salmon (**site-scale**)

Fish detections: PIT Tagged salmon detected entering restored tidal wetlands

Effectiveness Indicators

- Species composition
- Juvenile salmon density
- Genetic stock

This talk (landscape)

- Fish condition (length, weight, ratio)
- Diet/gut fullness Angie's talk
- Stable isotopes (prey, juvenile salmon)
- Growth physiology markers (IGF-1)
- Otoliths (growth, timing)

Brian's talk

Landscape-scale methods

Research Question: Are interior stocks of juvenile salmon feeding and growing as they migrate through the estuary?

AEMR Landscape-scale study

Each site sampled monthly

Two-boat tow net

Tow net sites

Purse seining

Neuston (surface plankton net)

Townet catches were similar in 2016 & 2017

Purse seine catches were also similar in 2016 & 2017

Yr Chinook stocks were amazingly consistent between years

Steelhead stocks were also very consistent between years

■ Low_Columbia ■ Willamette ■ Mid&Up_CR/Low_Snake ■ Salmon_R ■ Clearwater

Downstream

Stomach fullness across the estuary

Stomach fullness as % body weight

Downstream

Flux study

Research Question: How many and what types of potential prey are exported from restored and reference marsh habitats?

High water in 2017

Flux study methods

INSECT SAMPLES W/ PLANKTON NET

INVERTEBRATE SPECIES

- COUNT
- WEIGHT
- VOUCHER SPECIMENS FOR EDNA

FLOW AND CROSS-SECTIONAL AREA W/ ADCP

TIME SERIES

- WATER ELEVATION
- CROSS-SECTIONAL WETTED AREA m²
- MEAN VELOCITY m/s
- FLOW m³/s
- TEMPERATURE

Flux Study: Samples collected 2016-2017

Location	Site	Туре	Dates	Plankton
Steamboat				
(SB)	Main Ch	RES	3	35
	Primary Ch*	RES	2	24
	Secondary Ch	RES	3	18
Karlson (KI)	Res	RES	4	27
	Ref inside	REF	5	40
	Marsh E	REF	3	23
	Marsh W	REF	6	33
	Forested E	REF	3	26
	Forested W	REF	3	31
Welsh (WI)	Ref	REF	3	18
	Primary Ch*	REF	2	15
			37	290

LONG TERM ADCP DEPLOYMENTS

DATE	DOY	SITE ID	STATION	TRT	Duration	
18-Apr-17	108	Karlson	FORESTED E	REFERENCE	13	
4-May-17	124	Karlson	FORESTED W	REFERENCE	12	
2-Jun-17	153	Karlson	MARSH W	REFERENCE	24	
20-Jun-17	171	Steamboat	PRIMARY	IMPACT	38	
24-Jul-17	205	Karlson	FORESTED E	REFERENCE	22	
24-Jul-17	205	Karlson	MARSH E	REFERENCE	22	

Flux Results

MEASURING PREY EXPORT FROM TIDAL CHANNELS: KARLSON IS. MARSH EAST

DAY OF YEAR 2017

MODELING PREY EXPORT FROM TIDAL CHANNELS: ENERGY RATION = <u>SALMON ENERGY EQUIVALENTS</u>

SEE SALMON RATION **CALCULATE SALMON** ASSUMING • 1200 50 kJ/ kg/d **ENEGRY EQUIVALENTS (SEE)** 1 CHIRONOMID = 0.001 gSUBYEARLING (80 mm= 5 g SUB = NUMBER OF SALMON ENERGY DENSITY = 10 kJ/g. = 0.25 kJ/d• 100 YRLG SUPPORTED BY EXPORTED 3×10^4 chir exported x 10^{-3} • YEARLING (180 mm = 60 g IN ONE **CHIRONOMIDS / tide** g/chir x 10 kJ/g = 300 kJ $= 3 \, kJ/d$) TIDE!

Summary and conclusions

- Despite very different river conditions in 2016 and 2017, the catch of juvenile salmon at the landscape-scale was surprisingly similar with respect to abundance, and species and stock composition.
- Flux of prey (dominated by chironomid insects) from marsh habitats was unexpectedly large!
- The estuary is not a pipe! Juvenile salmon in the mainstem were actively feeding and growing in 2016 and 2017.
- More results to come
 - Short term: Peterson, Munguia, Sather and Beckman talks
 - Long term: Integration among studies (progress and final reports)

Acknowledgements

Field crew: Jake Biron, Wayne Haines, Dave Beugli

Boat operators: Brian Kelly, Kaya Johnson

Fish bleeder: Meredith Journey

Vision: Gary Johnson and Kurt Fresh

Funding by USACE

Comparison of effort & catch: 2016 & 2017

Attribute	2016	2017	
Sampling season	Apr-Jul	Mar-Jun	
Tow net sets	252	204	
Purse seine sets	45	37	
Total juvenile salmon caught	2,365	1,729	
Yr Chinook (bled)	611 (289)	446 (303)	
Steelhead (bled)	347 (217)	506 (369)	
Subyr Chinook (bled)	898 (0)	364 (60)	
Sockeye	290	133	
Coho	198	261	
Chum	20	18	