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Key Points About Coastal Zone Acidification

V.

Just because an environment is variable doesn’t make
an organism pre-adapted nor does it mean baseline
shifts may not be important.

Changes in average conditions are informative, but
provide cursory information for relevance to organisms.

In coastal zones understanding the chemistry well is
necessary to determine organismal impacts.

Almost all organisms do not like too much CO, but we
are still in our infancy in understanding responses. (this
doesn’t preclude us from responsibility to act!)



Definitions and Carbonate Chemistry Primer
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What is Ocean Acidification
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What is Ocean Acidification: The Global Scale
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Organisms don’t experience the decadal temperature change,
nor will the 0.1 pH unit change direct matter to most critters!



Acidification in the Coastal Zone: Carbonate Weather
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Contributors to ocean acidification. In addition to global atmospheric CO,, this figure depicts the major
local (within 100 km) sources contributing to coastal ocean acidification.  Kelly et al. 2011
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The local drivers can (and often will) be additive to the gradual baseline shift.
Effects can result in greater variability (e.g. eutrophication)...
This doesn’t mean that the global baseline doesn’t matter...



Heat Island Analogy...
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Fic. 7, Height variation of the magnitude of the urban heat island of New York City during the
hours near sunrise, Range of plus and minus one standard deviation is also shown.




Mussel Body Temperature in the Intertidal Heimuth et al. (2010)
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Back to Carbonate Chemistry and Weather Scales

Daily temperature change does not precludes a change in the global heat budget...

The milieu of processes that alter carbonate chemistry do not preclude the current
baseline shift in acidification, and impacts on carbonate weather.

Global Warming {8 Climate Change

Changes to carbonate
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contumpton of carbanace ions impedes calcficaton to environmental stress...



So what about the Carbonate Weather off
Oregon?



Multiple “Boxes” Set the Stage for Oregon Estuarine Conditions

Increasing temporal variability
Increasing complexity in signal

Tides

Upwelling, Light cycle
Baseline CO, Do Ve e Seag.rasst
Uptake from atmosphere Plus respiration Respiration
respired deep water carbon Water-benthos
Al The Carbonate Weather, or what

organisms experience, is the
integration of all these processes.




California Current: Acidification Hot Spot
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Netart’s Bay, OR and Whiskey Creek
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Chemistry during first 48 hours...
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Chesapeake Bay pH Trends: More Carbonate
Weather Trends



Annual trends in PH (daytlme) 1984-2008 Standard Deviation of pH (5 years)
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Meshing the Carbonate Climatology and
Biological Responses



Carbonate Chemistry, Frequency, and Biology
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Coastal “acidification” mechanisms

* Changes in Freshwater Delivery and Loadings of (N, P, POM, DOM, etc)...
* Stack and tailpipe emissions of Nox and Sox

e Carbon pumping by C3 plants in marshes

* Tidal pumping of sand and mud flats

In all these cases, the carbonate system parameters can decouple

lgggij QCaCo, = [Cazi feo."]
3

pH = _I—Oglo \/Kl * Kz *
sp—CaCG;

oH Surface Ocean co.apl ico.-1  Organisms don’t care what the acidification source,
but understanding what they are responding to is

———— / important for understanding this issue in the coastal
" zone.

[CO2(aq)]



Experiments to Understand Biological
Responses to Carbonate Weather:

What Carbonate System Parameter is Most
Important to Bivalve Larvae?



Experiments to determine important variable

Pco, (uatm)
Qarag
pH(sws)

DIC (umol/kg)

Talk (umol/kg)

Oyster Experiment 1

369 433 476 589
3.25 1.47 0.81 0.39
8.07 7.86 7.71 7.51
1957 1374 1049 806
2247 1519 1133 845
653 685 809 815
3.32 1.58 0.75 0.40
7.95 7.78 7.58 7.44
2568 1771 1234 903
2836 1904 1365 980
1352 1256 1360 1240
3.02 1.61 0.78 0.45
1.77 7.65 7.47 7.37
3438 2399 1723 1253
3644 2506 1761 1269
3334 3191 2767 2599
3.35 1.77 1.04 0.57
7.60 7.47 7.38 7.27
5619 3977 2695 1935
5772 4025 2851 2026

We manipulated the chemistry to let
the bivalve larvae tell us what is
important.

Working with multiple species, native
and non-native.

Orthogonal with Py, and Q, pH on
diagonals

Measure:
Normal Shell Development
Shell Length (normal)
Respiration
Feeding

Only acute impacts, 48 hours.



Results

Pacific Oyster
Mediterranean Mussel
Only Shell Parameters




Proportion Normal
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Shell Length (um)
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Shell Length

For the normally
developed larvae,
decreases in saturation
state make smaller
larvae.




Why Saturation State Matters...

o Wiy i Al et A (N0 Within 48 hours, 80-
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Environmental Relevance
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For early larvae, we will cross
saturation state thresholds well
before pH thresholds.

It is still very likely that pH is
having an effect, but trivial for the
larvae at this stage.

Adult organisms more robust, so
two perspectives...

Only need a brief period of
good chemistry

Only need a brief period of
bad chemistry

Predictions are greater intensity,
duration, and magnitude of bad
times...




Relevance to Columbia River Estuary...

We are estuarine scientists, embrace the variability...
Changes in water regimes will alter salinity and alkalinity
Acidification does not happen in a vacuum.

* Multiple stressors are important, but let’s be sure to
understand the single stressor also

Early life history stages are important (duh... ecology), and
understanding how systems change at the those times seems
key to me.
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Questions... Just not about the Columbia!



