

Ecosystem Monitoring Program: Abiotic Conditions & Stable Isotope Analysis 2010-2014 Whitney Hapke **David Piatt Jennifer Morace**

Background

Loss of emergent wetland habitat, greening of the river

- Shift in organic matter loadings
- Effects on juv. salmon food webs not understood
- Conditions of existing habitats?
- 1 site (2010); 4 "fixed" sites (2011-14)

Overview of 2010-14 USGS Work

Abiotic conditions:

Characterize habitat conditions and determine the extent & duration of stressful conditions for juvenile salmon

Food web utilization (SI analysis):

Determine the relative contributions of instream and wetland primary producers to the food web supporting juvenile salmonids in the Lower Columbia River & Estuary

Habitat Conditions

- Water-quality monitors:
 - Temperature
 - pH
 - Dissolved oxygen
 - Specific conductance
 - 15/30 minute logging
 - April July (2011 2014)

Habitat Conditions: Water Quality

- Sites had best water-quality conditions April-May
- All sites: unsuitable conditions by ~July most years
 - High temperature, low dissolved oxygen
 - 2013-14 warmer, lower DO than 2011-12
- Sites differed in frequency & duration of unsuitable conditions
- Primary drivers:
 - Columbia River flows
 - **Tidal influence, distance to mainstem** \rightarrow flushing rate

Food Web Analysis

Goal: determine the important food web components supporting juvenile salmon

Study question: What are the dominant organic matter sources supporting juvenile Chinook salmon food webs in the LCRE?
Changes in dominant sources by time, site?

Approach: Stable Isotopes

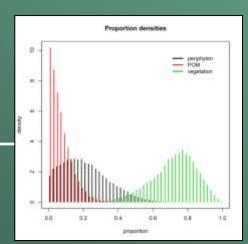
- Natural abundance stable isotopes of C, N as food web tracers
- δ values: ratio of heavy to light isotope, vs. a standard
- δ values of consumers' tissues reflect food sources
- Metabolic loss of light isotopes → consumers in higher trophic levels become enriched in heavy isotope ("trophic enrichment")
- Trophic enrichment factors (Post, 2002)
 - 0.4 ±1.3 ‰ (δ¹³C)
 - 3.4 ±1.3 ‰ (δ¹⁵N)

4 wetland sites in LCRE, April-July

Juvenile Chinook salmon tissues

Invertebrates Hatchery food

Phytoplankton, periphyton Marsh vegetation Submerged aquatic vegetation

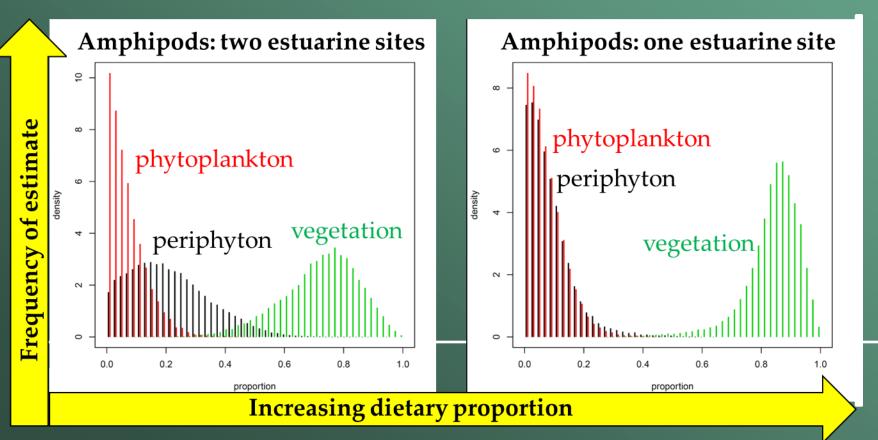


SIAR Mixing Model

- SIAR mixing model (Parnell & others, 2010)
- Estimates proportions of food sources in a consumer's diet
 - Allows for many food sources
 - Incorporates variability in SI signatures of food sources
 - Output: density of estimated dietary proportions
- Model runs:
 - Chinook salmon as consumers
 - Invertebrates as consumers

Preliminary Results: Salmon Diets (2010-12)

- Hatchery food largest dietary source for marked juvenile Chinook
- Chironomids contribute increasingly to unmarked Chinook diets with later months of fish catch
- Hatchery/maternal influence on SI of Chinook muscle
 - Muscle: long-term integrator
 - Mucus, liver: more recent diet sources
 - Muscle, liver, mucus (2013-14)

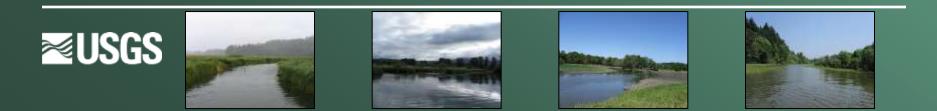


Preliminary Results: Invertebrate Diets (2010-12)

- Chironomids: Phytoplankton largest food source overall during season, esp. early season (May)
- Amphipods: Vegetation; phytoplankton not likely

Stable Isotopes: Current Status

2013-14 samples address spatial & temporal data gaps identified in preliminary analysis
Summary of 2013-14 samples:


Material	Number of samples (including replicates)
Chinook muscle, liver, mucus	74, 102, 77
POM / phytoplankton	68
Invertebrates	97
Periphyton	16
Vegetation	150

Data expected from lab ~end of 2014

Summary of Preliminary Findings

- Phytoplankton and vegetation both contribute to selected prey organisms' diets
 - Different locations, timing
 - Preliminary findings consistent with similar study in Columbia R. estuary and primary production patterns
- Importance of spring freshet magnitude & duration
 - affects wetland vegetation cover and phytoplankton productivity/species composition → food resources
 - water-quality conditions

Incorporate 2013-14 data, journal article

Put into context of other EMP work

- Invertebrate prey production from different vegetation types
- Wetland macrodetritus export calculations

