

Direct benefits of habitat restoration on juvenile salmon: site-scale evaluation

NICHOLE SATHER, REGAN MCNATT, ADAM MARTIN-SCHWARZE, KAILAN MACKERETH, HEIDI STEWART, SUSAN HINTON, GARY JOHNSON

Pacific Northwest National Laboratory, Coastal Science Division NOAA Fisheries, Northwest Fisheries Science Center

2018 Columbia River Estuary Conference

Conceptual model: Prey production in restored tidal wetlands benefit juvenile salmon directly onsite and indirectly offsite

 Tidal marsh

 Tidal marsh

 Enterna: Tagged salmon detected entering restored tidal wetlands

<u>Direct benefits</u>: Restored tidal wetlands provide refuge and prey resources for juvenile salmon (site-scale)

> <u>Flux</u>: Quantifying prey exported from tidal wetland restoration site to mainstem

> > Indirect benefits: Restored tidal wetlands export material that support mainstem foodwebs (landscape-scale)

> > > Flow

Mainstem Columbia River

Wetland Channels

Crims rkm 90

Batwater rkm 92

Fisher Island rkm 96

Dibblee rkm 105

Karlson Reference rkm 42

Karlson Restoration rkm 43

Welch rkm 53

Steamboat rkm 56

Native and Non-native fish

Unmarked Chinook Salmon

Genetic Stock ID: Reference Restoration **Chinook salmon** Sites Sites 79 NS 75 58 7 NS 77 62 30 1.0 1.0 0.8 0.8 Stock Proportion 0.6 0.6

0.4

0.2

0.0

7

Jul

Jun

2017

Apr

Mar

May

Jun

Jul

May

Apr

0.4

0.2

0.0

Mar

Geographic Origins

Genetic Stock

Classification of Detections

Detection Overview

	Unique	Fall	Spring		Northern	
	detections	Chinook	Chinook	Steelhead	Pikeminnow	"Orphans"
Welch	33	23	1	5	1	3
Max residence		13.4 d	10 m	1.3 d	0	20.9 d
Median residence		1.2 d		2 s		12 m
Steamboat	57	40	4	5	5	3
Max residence		21.6 d	1.8 h	1.0 d	106.7 d	23.5 d
Median residence		3.5 d	11 s	30 m	1.5 m	5 m

Salmon Prey: Water surface

Salmon Prey: Benthos

Salmon Diet

Mean Frequency of Occurence

Salmon Diet: Energy Content

AEMR Summary

- Juvenile salmon are using restored tidal wetland channels
- Wetlands are used by salmon from locations throughout the Columbia River basin.
 - **Interior stocks enter and use restored wetland channels**
- Restoration sites produce prey resources
 - Common salmon prey items were on average more abundant at reference sites
- The energy derived from prey resources at restoration sites was similar to energy consumed in reference sites
- Position within the landscape is an important consideration for CEERP
 - Non-native species
 - Density of Chinook salmon
 - Salmon diets
- Interactions --> complex relationships

Next Steps

Lab and Data analyses

Gut contents, stable isotopes of fish and prey
Environmental variables: water surface elevation and temperature
Integration

Reporting

AEMR findings available in the SM2

AEMR integration report

Acknowledgements

- **USACE**, Portland District
 - Cindy Studebaker, Ida Royer, Jake MacDonald, Mike Turaski
- **AEMR Project Collaborators**
 - Kurt Fresh, Kym Jacobson, Laurie Weitkamp, Curtis Roegner, Reagan McNatt
- **Property Access**
 - USFWS, Julia Butler Hanson Wildlife Reserve
 - **Estuary Partnership**
 - Oregon Dept. of State Lands
 - **Columbia County Parks**

- Field support and data collection:
 - **Eric Fischer**
 - Shon Zimmerman
 - Allison Cutting
 - April Silva, CREST
 - Narayan Elasmar, CREST
- Laboratory Analyses
 - Genetics
 - Don VanDoornik, NOAA
 - Diet and prey taxonomy
 - **EcoAnalysts**

US Army Corps of Engineers®