2018 Ecosystem Monitoring Program

i. The lower food web: Algal
Tawnya Peterson . .
Joseph Needoba biomass patterns in off-
Lyle Cook channel habitats of the lower
Stuart Dyer Columbia River
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2018 Ecosystem Monitoring Program

ii. Investigating the diet of
juvenile Chinook salmon using
stable isotopes of carbon and
hitrogen

Tawnya Peterson
Joseph Needoba
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Phytoplankton constitute an important
component of off-channel habitats

Goal: Characterize status and trends in rearing and
migratory habitat for juvenile salmonids in the lower
Columbia River

Focus _
» What fish experience: Water quality

* What fish consume: Organic matter
supporting juvenile salmon & prey
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Chlorophyll (ug/L)

Highest algal biomass is higher at Campbell Slough and
Franz Lake Slough than other sites (2011 — 2017)
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Chlorophyll a (ug L?)

2018: Algal biomass similar to average

(Highest = 2016)
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Chlorophyll a (ug L)

2018: Algal biomass among the highest

(Highest = 2014)
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2018: Spring peak algal biomass among the highest

(Highest = 2014)

Chlorophyll a (ug L)
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2018: Spring peak algal biomass quite variable — high & low
(Highest = 2017)
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2018: Spring peak algal biomass similar to 2016
(Highest = 2017)
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Diatoms

* High polyunsaturated
fatty acids

* High nutritional quality

* Dominate spring blooms

* Thrive under moderate
to high turbulence
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Abundanos (celsiml)

(cells/ml)
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Diatoms dominate at Whites Island but
not always at Campbell Slough
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Diatom densities, Whites Island
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* Peak spring diatom densities dominated by
Asterionella formosa (2012, 2014)
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Diatom densities, Campbell Slough
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Typical diatom Typical rotifer

species that grazer found in the
blooms in the spring
spring

Large, colonial diatoms are too big for zooplankton
to consume, and are therefore they are exported
and lost to the ecosystem.
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Carbon (ug C/ml)

Amount of carbon is generally dominated by
diatoms at both Whites Island and Campbell Slough
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Carbon (ng C ml?)

The largest amount of carbon lost to
parasitic infections was highest in 2014 at
Whites; 2013, 2017 at Campbell
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Cyanobacteria blooms in the Columbia River have
been repeatedly detected during the Ecosystem
Monitoring Program
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In (cyanobacteria abundance (cells/mL))

Total cyanobacteria densities tend to be higher at
Campbell Slough than Whites Island
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Conditions that favor
cyanobacteria:

* High temperature
* Nutrients
* High light/stratification




As water levels drop, Campbell Slough diverges from
mainstem conditions more than Whites Island
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In(cyanobacteria abundance, cells/mL)

Phosphate concentrations predict cyanobacteria
abundance, particularly at Campbell Slough
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2018 Ecosystem Monitoring Program

ii. Investigating the diet of
juvenile Chinook salmon using
stable isotopes of carbon and
hitrogen

Tawnya Peterson
Joseph Needoba
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Ecosystem Monitoring Program seeks to inform wetland
restoration activities by providing fundamental ecological
knowledge about salmonid habitats and food webs

Invertebrates
Vascular plants Phytoplankton & macroalgae
Aquatic, terrestrial Fluvial, benthic

Freshwater & marine Freshwater & marine




Stable isotope ratios can be used to infer
relationships between consumers & food sources

* Overcomes biases associated with ingestion vs.
assimilation, as well as difficulty identifying
partially digested prey

613C = (Rsample_ Rstandard)/ Rstandarg X 1000 (units = %o)

* |[nput data into a stable isotope mixing model
to predict contributions from different sources

— SIMMR (Parnell et al., 2013): Bayesian mixing
model fitting using Markov chain Monte Carlo



Carbon & nitrogen are building blocks of biomass

* |sotope ratios of carbon (*3C/*?C): characteristic of source of
primary production

* |sotope ratios of nitrogen (*>’N/'*N) are characteristic of trophic

position
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Assumptions

* Different food sources have distinct enough
signatures to discriminate between them

* Thereis an increase in 13C and >N with each
ascending trophic level of ~1 %0 and ~3.5 %o,

respectively

“Isotopes are not a magic bullet for determining or comparing
diets... As is often the case with ecology, you also need a little luck

in there too in terms of the geometry of your system in isotope
space, which impacts on the mathematical and statistical power
you will have to answer your questions.” — Andrew Jackson



Questions

 What food sources are juvenile salmon
assimilating in the Columbia River estuary?

— Does the isotopic composition of organic matter
sources change in space or time?

 What are their prey eating?

— Do different prey consume different sources of
organic matter?

— Does organic matter source vary with the
hydrograph or environmental conditions?



Methods

* Samples

— Juvenile Chinook salmon muscle (and some livers)

* Food sources

— Invertebrates (amphipods, chironomids,
nematodes, polychaetes, oligochaetes, copepods,
cladocerans, etc.)

— Primary producers (live & dead vegetation,
periphyton, particulate organic matter)
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Juvenile Chinook liver

Isospace plots show

e Similarity between April & May
e Similarity between June & July
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Isotopic signatures of primary producers
(plants, periphyton, POM) in the Columbia
River estuary




Isotopic signhatures of primary producers in
the Columbia River estuary
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Isotopic signatures of primary producers
(plants, periphyton, POM) in the Columbia
River estuary
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Isotopic signatures of juvenile Chinook & prey
used to infer assimilation (SIMMR)
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Based on mixing model results, chironomids
assimilate organic matter from periphyton
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Based on mixing model results, amphipods mainly
assimilate particulate matter
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Stable isotope signatures of marked fish
differ from unmarked fish

A Unmarked LG

-26.0 -24.0 -22.0 -20.0 -18.0
O 13C (%o)

» 313C was significantly more depleted in unmarked fish
compared to marked fish (p < 0.0001)
* There was no difference in 6°N (p = 0.4057)



Dietary proportions in unmarked vs. marked
juvenile Chinook salmon (SIMMR)

unmarked 5 marked

Proportion

.l i

AMPH CHIR COPE CLAD OTHER AMPH CHIR COPE CLAD OTHER HATCH
Source




Summary of findings

Stable isotopes of C and N varied in time, with
differences likely tied to the hydrograph

Prey: Amphipods & chironomids consume mainly
POM and periphyton, respectively

Diet: Model suggested that Juvenile Chinook
salmon assimilate OM from invertebrates other
than chironomids and amphipods

Juvenile Chinook salmon tissues were isotopically
heavier compared to measured sources

Marked fish were heavier in C compared to wild
fish






Phytoplankton Abundance
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Ecosystem metabolism
pH

Food quantity

Food quality

Energy flow



Link between phytoplankton and
salmon

* Fish catches and satellite chlorophyll paper



Link between benthos and pelagic
habitat



Cyanobacteria: an emerging threat



Parasites
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Comparison of dietary proportions in
unmarked juvenile Chinook muscle (SIMMR)
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