TIDAL WETLAND RESTORATION AND SEA-LEVEL RISE: SEED BANK RESPONSE TO CHANGES IN TIDAL FLOODING AND SALINITY

SARAH KIDD AND ALAN YEAKLEY PORTLAND STATE UNIVERSITY COLUMBIA RIVER ESTUARY CONFERENCE MAY 2016

Map created by Sarah Kidd, 2015

KIDD & YEAKLEY 2016

Youngs Bay is oligohaline - low salinity (0.5-5ppt)

Young's Bay Watershed, Oregon -Land Conversion - 97% Loss of Tidal Wetlands

TRAJECTORY STUDY

Research Sites Include:

- 11 Restored: 1-54yr
 Chronosequence
- 4 Reference Wetlands
- 2 Pasture (pre-restoration sites)
- Observed trajectories and patterns among the restoration sites

Restoration Trajectories of Tidal Wetland Ecosystems

Observed restored low elevation marsh areas had higher similarity to reference marshes and less non-native species than higher elevation marsh areas.

KIDD & YEAKLEY 2016

Phalaris arundinacea, reed canarygrass, and Juncus effusus subsp. effusus, common rush

Carex lyngbyei Hornem., lyngbye's sedge, and Schoenoplectus lacustris (L.) Palla, bulrush

Restoration Trajectories of Tidal Wetland Ecosystems

Observed restored low elevation marsh areas had higher similarity to reference marshes and less non-native species than higher elevation marsh areas.

KIDD & YEAKLEY 2016

Phalaris arundinacea, reed canarygrass, and Juncus effusus subsp. effusus, common rush

Carex lyngbyei Hornem., lyngbye's sedge, and Schoenoplectus lacustris (L.) Palla, bulrush

Restoration Trajectories of Tidal Wetland Ecosystems

Observed restored low elevation marsh areas had higher similarity to reference marshes and less non-native species than higher elevation marsh areas.

Wetland Plant Community Development

KIDD & YEAKLEY 2016

Phalaris arundinacea, reed canarygrass, and Juncus effusus subsp. effusus, common rush

Carex lyngbyei Hornem., lyngbye's sedge, and Schoenoplectus lacustris (L.) Palla, bulrush

SEED BANK COMPOSITION AND VIABILITY

- A seed bank is the collection of seeds found in the soil
- Seed germination is triggered by the right set of environmental conditions

• A wetland's seed bank has been found to play an important role in wetland plant community development and resilience over time Citations: van der Valk, A. G. 1981, Keddy 2004, Neff et al. 2009, McCormick and Gibble 2014

Drivers of Restoration Trajectories - Tidal Wetland Ecosystems

Major Restoration Impacts

Tidal Wetland Flooding

- Frequency
- Duration
- Salinity

Soil Conditions

- Oxygen
- Salinity
- Nutrients
- Composition

Plant Community

- Species existing and introduced
- Species requirements & tolerances
- Competition

Restoration Outcomes

How do seed bank compositions of restored native and non-native plant communities compare?

How do these **seed banks** respond to different **tidal flooding and salinity** conditions?

SEED BANK SAMPLING

Seed Bank Sampling – April 2015

Dominant Native and Non-native Plant Communities Across 2 Restored Sites (1959, 2007)

Lewis & Clark National Historical Park Restoration Sites Seed Bank Sampling Locations & Elevation Map (2009 LiDAR - NAVD88)

Lewis & Clark National Historical Park Restoration Sites Seed Bank Sampling Locations & Elevation Map (2009 LiDAR - NAVD88)

Plant Assemblage Elevation Ranges

Frequency Analysis: Daily Mean Tidal Flooding Conditions March 2015

F	Plant Assemblages						Soil Saturation - Tidal Inundation Cycle			
5 <u>-</u>	≥9 ft	Reed ca	narygrass	s, Commo	n rush		≤1 hr, Once a Day			
)	9-8.5 ft Common rush, Reed canarygrass									
	vation		8.5-8 ft	8.5-8 ft Common rush, Reed canarygrass Lyngbye's sedge				Md Marsh		
	(ft)			8-7 ft	Commo Lyngbye	n rush, Re e's sedge, I	ed canarygra Bulrush	ass ≤3 hrs, Twice a D	ay	
	,				7-6.5 ft	Lyngbye'	s sedge, Bul	rush Lo v Mal	rsh	
						6.5-4.5 ft	Bulrush	≤6 hrs, Twice a D	bay	

KIDD & YEAKLEY 2016

σ

ถ

Plant Assemblage Elevation Ranges

Frequency Analysis: Daily Mean Tidal Flooding Conditions March 2015

By 2050 SLR is predicted to increase local water levels up to 1.12 ft (0.10-0.34 m) (Glick et al. 2007, Tebaldi et al. 2012)

GREEN HOUSE STUDY

		Salinity Gradi	ent	
	Treatments	Fresh <1 ppt	Oligohaline 3 ppt	Brackish 10 ppt
llen	High Marsh			
rad	(Flooded 1 hr x 1 day)			
5 50 50				
Idal Flood	Mid-Marsh (Flooded 3 hr x 2 day)			
	Low Marsh (Flooded 6 hr x 2 day)			

- Seed bank samples processed to remove large debris and organic matter these processed samples (~1,000 ml each) were then divided into 10 – 100ml sub-samples
- 9 of these sub-samples were distributed across the salinity x flooding treatments
- The 10th sample was dried and evaluated for seed composition via direct seed ID

GREEN HOUSE STUDY

		Salinity Gradi	ent		
	Treatments	Fresh <1 ppt	Oligohaline 3 ppt	Brackish 10 ppt	
lidal Flooding Gradient	High Marsh (Flooded 1 hr x 1 day)	Native n=20, Non-native n=20	Native n=20, Non-native n=20	Native n=20, Non-native n=20	
	Mid-Marsh (Flooded 3 hr x 2 day)	Native n=20, Non-native n=20	Native n=20, Non-native n=20	Native n=20, Non-native n=20	
	Low Marsh (Flooded 6 hr x 2 day)	Native n=20, Non-native n=20	Native n=20, Non-native n=20	Native n=20, Non-native n=20	

- Seed bank samples processed to remove large debris and organic matter these processed samples (~1,000 ml each) were then divided into 10 – 100ml sub-samples
- 9 of these sub-samples were distributed across the salinity x flooding treatments
- The 10th sample was dried and evaluated for seed composition via direct seed ID

METHODS: SEED BANK PROCESSING & GREEN HOUSE

KIDD & YEAKLEY 2016

Plant Community Groupings

	100	Reed	canary	grass (P	h ar)	Со	mmon r	ush (Ju	ef)	Lyng	gbye's s	edge (Ca	a ly)		Bulrusł	n (Sc la)	
	100																
	90												-				
ss (%)	80																
ample	70																
Bank S	60												-				
f Seed	50																
tion of	40												-				
ropor	30												-				
-	20												-				
	10												-				
	0												_				
Se	eed ID	Ph ar	Ju ef	Ca ly	Sc la	Ph ar	Ju ef	Ca ly	Sc la	Ph ar	Ju ef	Ca ly	Sc la	Ph ar	Ju ef	Ca ly	Sc la
Sai	mples		n=:	14			n=	=6			n=	13			n=	=7	

Plant Community Groupings KIDD & YEAKLEY 2016 Reed canarygrass (Ph ar) Common rush (Ju ef) Lyngbye's sedge (Caly) Bulrush (Sc la) 100 90 Proportion of Seed Bank Samples (%) 80 70 60 50 40 30 20 10 0 Seed ID Ph ar Ju ef Ca ly Sc la Phar Juef Ca ly Sc la Ph ar Ju ef Ca ly Sc la Ph ar Ju ef Ca ly Sc la **Samples** n=14 n=6 n=13 n=7

KIDD & YEAKLEY 2016

Plant Community Groupings

	High Marsh (Flooded 1 hr x 1 day)			Mid-Mars	sh (Flooded 3 h	r x 2 day)	Low Mars	h (Flooded 6 h	r x 2 day)
25									
Treatments (%)									
ation Across									
on of Germin 01									
Proporti 2									
0									
	Fresh (<1 ppt)	Oligohaline (3 ppt)	Brackish (10 ppt)	Fresh (<1 ppt)	Oligohaline (3 ppt)	Brackish (10 ppt)	Fresh (<1 ppt)	Oligohaline (3 ppt)	Brackish (10 ppt)

SEED BANK RESPONSE TO EXPERIMENTAL FLOODING & SALINITY

MEAN RELATIVE PROPORTION (%±SE) KIDD & YEAKLEY 2016

	High Marsh (Flooded 1 hr x 1 day)	Mid-Marsh (Flooded 3 hr x 2 day)	Low Marsh (Flooded 6 hr x 2 day)		
25					
20					
15					
10					
5					
0	노 문 가 문 가 문 가 문 가 문 가 다 가 다 다 다 다 다 다 다 다	Har Sclar Phane S	Har Phar Phar Phar Phar Phar Phar Cligopaline Scla V Scla V (10 bbt) (10 bbt)		

Proportion of Germination Across Treatments (%)

SEED BANK RESPONSE TO EXPERIMENTAL FLOODING & SALINITY

MEAN RELATIVE PROPORTION (%±SE) KIDD & YEAKLEY 2016

 SEED BANK RESPONSE TO EXPERIMENTAL FLOODING & SALINITY

 MEAN RELATIVE PROPORTION (%±SE) KIDD & YEAKLEY 2016

 High Marsh (Flooded 1 hr x 1 day)
 Mid-Marsh (Flooded 3 hr x 2 day)
 Low Marsh (Flooded 6 hr x 2 day)

SEED BANK RESPONSE TO EXPERIMENTAL FLOODING & SALINITY

MEAN RELATIVE PROPORTION (%±SE) KIDD & YEAKLEY 2016

KID	d & yeakley 2016	SEED BANK CO	MPOSITION		
	Outcomes	Similar seed bank compositions (no more or less native/non-native)	Different seed bank compositions (more or less native/non-native)		
Flooding and Salinity	Similar response to tidal/ salinity treatments	Plant competition	Initial establishment and plant competition		
Seed Bank Viability –	Different response to tidal/ salinity treatments	Tidal flooding/salinity gradients	Initial establishment and tidal flooding/salinity gradients		

KID	D & YEAKLEY 2016	SEED BANK CO	MPOSITION
	Outcomes	Similar seed bank compositions (no more or less native/non-native)	Different seed bank compositions (more or less native/non-native)
FLOODING AND SALINITY	Similar response to tidal/ salinity treatments	Plant competition	Initial establishment and plant competition
Seed Bank Viability –	Different response to tidal/ salinity treatments	Tidal flooding/salinity gradients	Initial establishment and tidal flooding/salinity gradients

KID	D & YEAKLEY 2016		SEED BANK CO	MPOSITIO	ON	
	Outcomes	Similar seed bank compositions (no mor less native/non-native	e or :)	Diffe compo less na	rent seed bank ositions (more or ative/non-native)	
Bank Viability – Flooding and Salinity	Similar response to tidal/ salinity treatments	Plant competi Tidal flooding/ gradients	ition Fresh – Oligoh Low – High Flo salinity	Ini pla aline ooding Initi tida grad	Native Species	s ent and fity
Seed				0		

KID	d & Yeakley 2016	SEED BANK CO	MPOSITION		
	Outcomes	Similar seed bank compositions (no more or less native/non-native)	Different seed bank compositions (more or less native/non-native)		
and Salinity	Similar response to tidal/ salinity treatments	Plant competition	Native Species Initial establishment and plant competition		
BILITY – FLOODING	Different	Fresh – Oligor Low – High Fle	haline boding Non-native Species		
Seed Bank Viae	tidal/ salinity treatments	Tidal flooding/salinity gradients	Initial establishment and tidal flooding/salinity gradients		

KID	D & YEAKLEY 2016	SEE	D BANK CO	MPOSITION		
	Outcomes	Similar seed bank compositions (no more or less native/non-native)		Different compositio less native/	t seed bank ns (more or /non-native)	
Flooding and Salinity	Similar response to tidal/ salinity treatments	Plant competition	Brackish Low - Hig	Initial plant o	establishme competition	ent and
Seed Bank Viability – Fl	Different response to tidal/ salinity treatments	Tidal flooding/salini gradients	ity	Initial es tidal floo gradient	Non-nativ Native S stablishmen oding/salini ts	e Species Species t and ty

Ph ar, Ju ef, Ca ly, Sc la seeds

- Collected Fall 2014
- Cold stratified 4 weeks
- Treated: Three flooding scenarios (fresh water)
- n=14 + 1 control for each treatment combo including
 15 seeds of each species

KIDD & YEAKLEY 2016 Further Evidence

Direct Seed Planting Experiment

Direct Seed Planting Experiment

Relative % of Total Seed Germination for each Species (Mean ±SE)

KIDD & YEAKLEY 2016 Across Flooding Treatments

Undergrad Nathan Kossnar **Collecting Germination Data**

Ph ar, Ju ef, Ca ly, Sc la seeds

- **Collected Fall 2014** •
- **Cold stratified 4 weeks** •
- **Treated: Three flooding** • scenarios (fresh water)
- n=14 + 1 control for each treatment combo including **15** seeds of each species

Very strong germination signal – significant decrease in Ph ar & Ju ef and increase in Sc la with increased flooding frequency and duration

Conclusions

- Small Changes in Environmental Gradients: Flooding Frequency and Duration + Salinity are important drivers of Native and Non-native plant community distributions
- Existing Seed Banks are important especially in the <u>high marsh zone</u> if they contain nonnative wetland species at the time of restoration

Research Sponsors

QUESTIONS?

BIG THANK YOU TO THE LEWIS AND CLARK NATIONAL HISTORICAL PARK Cooperative Research Grant— Resources of the National Park System (CESU)

THANK YOU FOR LISTENING!

Sarah Kidd PhD Candidate, PSU sarahkidd@pdx.edu Instagram/Twitter: @science_kidd Website: SarahKidd.info

