Enhancing blue carbon sequestration and resilience to sea level rise with tidal marsh restoration

Katrina Poppe, John Rybczyk, Logan Parr, Analissa Merrill, Sage Pollack

What is Blue Carbon?

"Blue carbon" = Carbon stored, sequestered, or released from tidal wetlands

Annual Carbon Sequestration Rate³

McLeod et al. 2011

What makes tidal wetlands so good at sequestering carbon?

McLeod et al. 2011

- 1. Anaerobic soil
- 2. Tidal and riverine flooding delivers sediment that buries organic material

Why is Blue Carbon important?

Drained and degraded wetlands release stored carbon

Tidal wetland losses continue to outpace gains in the U.S. Blue carbon could help by adding climate mitigation as additional incentive to prioritize wetland restoration/conservation

Restoration efforts limited by lack of funding and resources

Voluntary Carbon Market

1 carbon offset = 1 tonne CO_2eq = Average \$4 - 5 in the U.S.

Methodologies

- Provide detailed guidance for particular types of projects
- Methodology for Tidal Wetland and Seagrass Restoration (2015)

Standards

- Projects must be approved by a standard
- Provide requirements for GHG accounting

Stillaguamish estuary

The Nature Conservancy owns 4,122-acre Port Susan Bay Preserve

Contains a 150-acre marsh restoration site

We have been monitoring elevation change with SETs since 2011

-1.8

Grossman and Curran (2015)

Approach

- 1. Obtain carbon stocks partitioned into three pools:
 - Aboveground biomass
 Belowground biomass
 Sediment carbon
- 2. Determine carbon sequestration rates Long-term accretion rate using Pb-210
- 3. Continue monitoring elevation change at 21 SETs
- 4. Site characteristics:
 - Elevation, salinity, sediment grain size

Sediment coring

• 75-100 cm depth

Biomass sampling

- Above- and belowground
- Separate shoots by species
- Separate roots by live and dead

Biomass Results

Elevation

Carbon Stocks

Elevation Change Rates

Carbon Sequestration Rates

Preliminary

Climate Benefit of Marsh Restoration

5,000

Cars Off road

150-acre site will sequester 5,660 - 13,200 tonnes C.

 Equivalent to taking 4,440 – 8,880 cars off road for one year.

Restoration site worth \$83,000 - \$207,500 in carbon offsets using national average of \$4-5/Tonne CO₂.

Climate Benefit of Marsh Restore

METHANEWARNING 150-acre site will se 5,660 - 13-2

5,0₀C

one worth \$83,000 - \$207,500 in offsets using national average of $4-5/Tonne CO_2$.

Insights

- 1. Sediment carbon stocks much higher than biomass stocks
- 2. Sediment carbon stocks relatively low in the Pacific Northwest
- 3. Restoration soil profile resembles reference marshes in just a few years
- 4. Healthy accretion rates, much higher than current rate of SLR, offering both climate change resilience and mitigation

Acknowledgments

PI: John Rybczyk Research Assistants: Logan Parr Analissa Merrill Sage Pollack

Funding:

Washington Sea Grant

