Assessing the Relative Importance of Local and Regional Processes on the Survival of a Threatened Salmon Population Jessica A. Miller¹, David Teel², Bill T. Peterson³ and Antonio M. Baptista⁴ ¹Oregon State University, Newport, OR ²NOAA Fisheries, Manchester, WA ³NOAA Fisheries, Newport, OR, ⁴NSF Science and Technology Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, OR ## Snake River Spring/Summer Chinook Salmon ESA: Threatened (1992) Smolt-to-Adult (SAR) return 1998 to 2008 ŜAR: 0.22 - 3.7% Higher river flow Cooler water temps Upwelling intensity FW vs. Marine? Mechanisms? ## **Objectives** - Characterize juvenile emigration & early marine residence - Evaluate Growth-Mortality and Match-Mismatch Ho #### Questions Are juvenile attributes during early marine residence related to survival? If so, what physical or biological variables are related to those attributes? Insights into mechanisms of survival? ## Approach: Genetic Stock ID & Otolith Chemistry/Structure Genetic Analysis of Pacific Salmon (GAPS) Seeb et al. 2007 - microsatellite DNA baseline #### **Stock-Specific** Size at and timing of marine entry Marine growth rate Tomaro et al. 2012: Mid-upper Columbia River spring Chinook #### Ocean Collections Snake River Sp/Su Chinook 22% of all yearlings collected May and June 1999-2000, 2002-2004, 2006-2008 (very low catch in 1998, 2001 & 2005) 81% >75% posterior probability of genetic assignment NOAA NWFSC. BPA ## **Biological & Physical Metrics** #### <u>Juvenile Salmon</u> - Size at and timing of emigration - Marine growth rate (% d⁻¹, mm) - Size at capture - May & June CPUE (yearlings km⁻¹) #### **Productivity** - Copepod Community Index (CCI) - Biological spring transition = seasonal shift in CCI #### Physical Metrics - Columbia River flow - Plume metrics (volume, area, position) - PDO, NPGO - Physical spring transition Multi-model inference: AIC r < 0.50 # Biological Indicators: Copepod Community Index (CCI) Warm-water, lipid-poor community Cold-water, lipid-rich community Ordination of copepod community ## Snake River Spring/Summer Chinook Salmon Smolt-to-adult return Lower Granite Dam – Lower Granite Dam Fish Passage Center (http://www.fpc.org) Modified from Petrosky & Schaller 2010 ## Results #### Match-Mismatch Ho - timing of juvenile emigration - interannual variation? - relationship with survival? ### **Emigration Timing** - April 20 to June 19 - Mean = May 6 to May 18 - 20 d in marine waters prior to capture (15 to 26 d) - 146 169 mm FL at capture 34% emigrated <3 d prior to capture ## Juvenile emigration timing in relation to survival Physical Transition (r = -0.090) Biological Transition (r = 0.639) -60 -40 -20 0 20 40 60 80 100 120 ## Results Growth-Mortality Ho - Is early marine growth related to survival? ## Growth-Mortality Ho Size at freshwater emigration (n = 151) $$r = -0.252$$ Size at capture (n = $$731$$) r = 0.833 Marine growth (n = 151) r = 0.727 ## Indicators of juvenile size at capture (20 d at sea) - 1999, 2000, 2002-2004, 2006-2008 - Plume area (April to July) - NPGO (April to June) - 15 models compared | Model | RSS | AIC _c | | w _i | R ² | |--|-------|------------------|-------|----------------|----------------| | PIArea _{4_7} | 0.050 | -28.67 | 0.000 | 0.398 | 0.812 | | NPGO _{4_6} | 0.054 | -28.05 | 0.623 | 0.291 | 0.797 | | PDO _{7_9} | 0.062 | -26.86 | 1.812 | 0.161 | 0.765 | | CCI ₆ | 0.069 | -26.07 | 2.605 | 0.108 | 0.740 | | CCI _{6,} (CCI ₆) ² | 0.029 | -23.59 | 5.083 | 0.031 | 0.890 | #### Results How do juvenile attributes compare with other physical and biological indices in accounting for the variation in survival? ## Survival hindcast SAR: 1998-2008 | Model | AIC _c | | wi | R ² | |--|------------------|--------|-------|----------------| | 1. PDO _{7_9} , CCI ₆ | -78.15 | 0.000 | 0.430 | 0.830 | | 2. PDO _{7_9} | -78.05 | 0.095 | 0.410 | 0.724 | | 3. CPUE ₆ | -74.24 | 3.913 | 0.061 | 0.731 | | 4. PDO _{7_9} , (PDO _{7_9}) ² | -73.80 | 4.346 | 0.049 | 0.748 | | 5. NPGO _{4_6} , CPUE ₆ | -72.16 | 5.985 | 0.022 | 0.707 | | 6. NPGO _{4_6} | <i>-7</i> 1.95 | 6.196 | 0.019 | 0.520 | | 7. CCI ₆ | -69.04 | 9.134 | 0.004 | 0.373 | | 8. CCI ₆ , (CCI ₆) ² | -68.87 | 9.276 | 0.004 | 0.507 | | 9. CRFlow _{4_7} | -65.49 | 12.653 | 0.001 | 0.135 | | Parameter | Relative
Importance | |---------------------|------------------------| | PDO _{7_9} | -0.692 | | CCI ₆ | -0.115 | | CPUE ₆ | 0.059 | | NPGO _{4_6} | 0.023 | 10 models compared Only variables with cross correlations < 0.5 in same model #### Survival forecast SAR: 2009-2011 PDO index remarkably informative in earlier years Other basin-scale (NPGO) and biological indices (June CCI & CPUE) provided more accurate indications of survival in recent years. ## Summary - Snake River sp/su Chinook salmon - Limited evidence for Match-Mismatch Ho but trend towards increased survival when juveniles entered further after biological transition - Strong evidence for Growth-Mortality Ho (similar to mid-upper CR spring Chinook) - Marine growth and size at capture (20 d) >> size at emigration - Cohort size largely established after 20 d in ocean? - CCI₆ and CR plume area_{4.7} best predictors of size at capture - Excludes low catch years (1998, 2001 & 2005) - Hindcast: PDO_{7 9}, CPUE₆, CCl₆, and NPGO_{4 6} best predictors of SARs - Includes low catch years (1998 to 2008) - Forecast: Basin-scale (PDO_{7_9}) poor predictor of SARs in forecast models, local, biological (CCl₆, CPUE₆) best ## Acknowledgements #### Survival in relation to CR Plume: 1999-2008 In general, positive relationship with plume size Salmon Ocean Indicators (www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/index.cfm) Interaction between river & coastal ocean "good ocean" conditions compensate for "poor river/plume" conditions? Similar pattern for Upper Col. River Su Fa Chinook salmon & plume volume - Miller et al. 2013