Assessing the Relative Importance of Local and Regional Processes on the Survival of a Threatened Salmon Population

Jessica A. Miller¹, David Teel², Bill T. Peterson³ and Antonio M. Baptista⁴

¹Oregon State University, Newport, OR

²NOAA Fisheries, Manchester, WA

³NOAA Fisheries, Newport, OR, ⁴NSF Science and Technology Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, OR

Snake River Spring/Summer Chinook Salmon

ESA: Threatened (1992)

Smolt-to-Adult (SAR) return 1998 to 2008

ŜAR: 0.22 - 3.7%

Higher river flow Cooler water temps Upwelling intensity

FW vs. Marine?
Mechanisms?

Objectives

- Characterize juvenile emigration
 & early marine residence
- Evaluate Growth-Mortality and Match-Mismatch Ho

Questions

Are juvenile attributes during early marine residence related to survival?

If so, what physical or biological variables are related to those attributes?

Insights into mechanisms of survival?

Approach: Genetic Stock ID & Otolith Chemistry/Structure

Genetic Analysis of Pacific Salmon (GAPS)

Seeb et al. 2007 - microsatellite DNA baseline

Stock-Specific

Size at and timing of marine entry

Marine growth rate

Tomaro et al. 2012: Mid-upper Columbia River spring Chinook

Ocean Collections

Snake River Sp/Su Chinook 22% of all yearlings collected

May and June 1999-2000, 2002-2004, 2006-2008 (very low catch in 1998, 2001 & 2005)

81% >75% posterior probability of genetic assignment

NOAA NWFSC. BPA

Biological & Physical Metrics

<u>Juvenile Salmon</u>

- Size at and timing of emigration
- Marine growth rate (% d⁻¹, mm)
- Size at capture
- May & June CPUE (yearlings km⁻¹)

Productivity

- Copepod Community Index (CCI)
- Biological spring transition = seasonal shift in CCI

Physical Metrics

- Columbia River flow
- Plume metrics (volume, area, position)
- PDO, NPGO
- Physical spring transition

Multi-model inference: AIC r < 0.50

Biological Indicators: Copepod Community Index (CCI)

Warm-water, lipid-poor community

Cold-water, lipid-rich community

Ordination of copepod community

Snake River Spring/Summer Chinook Salmon

Smolt-to-adult return

Lower Granite Dam – Lower Granite Dam

Fish Passage Center (http://www.fpc.org)

Modified from Petrosky & Schaller 2010

Results

Match-Mismatch Ho

- timing of juvenile emigration
- interannual variation?
- relationship with survival?

Emigration Timing

- April 20 to June 19
- Mean = May 6 to May 18
- 20 d in marine waters prior to capture (15 to 26 d)
 - 146 169 mm FL at capture

34% emigrated <3 d prior to capture

Juvenile emigration timing in relation to survival

Physical Transition (r = -0.090)

Biological Transition (r = 0.639)

-60 -40 -20 0 20 40 60 80 100 120

Results

Growth-Mortality Ho

- Is early marine growth related to survival?

Growth-Mortality Ho

Size at freshwater emigration (n = 151)

$$r = -0.252$$

Size at capture (n =
$$731$$
)
r = 0.833

Marine growth (n = 151) r = 0.727

Indicators of juvenile size at capture (20 d at sea)

- 1999, 2000, 2002-2004, 2006-2008
- Plume area (April to July)
- NPGO (April to June)
- 15 models compared

Model	RSS	AIC _c		w _i	R ²
PIArea _{4_7}	0.050	-28.67	0.000	0.398	0.812
NPGO _{4_6}	0.054	-28.05	0.623	0.291	0.797
PDO _{7_9}	0.062	-26.86	1.812	0.161	0.765
CCI ₆	0.069	-26.07	2.605	0.108	0.740
CCI _{6,} (CCI ₆) ²	0.029	-23.59	5.083	0.031	0.890

Results

How do juvenile attributes compare with other physical and biological indices in accounting for the variation in survival?

Survival hindcast

SAR: 1998-2008

Model	AIC _c		wi	R ²
1. PDO _{7_9} , CCI ₆	-78.15	0.000	0.430	0.830
2. PDO _{7_9}	-78.05	0.095	0.410	0.724
3. CPUE ₆	-74.24	3.913	0.061	0.731
4. PDO _{7_9} , (PDO _{7_9}) ²	-73.80	4.346	0.049	0.748
5. NPGO _{4_6} , CPUE ₆	-72.16	5.985	0.022	0.707
6. NPGO _{4_6}	<i>-7</i> 1.95	6.196	0.019	0.520
7. CCI ₆	-69.04	9.134	0.004	0.373
8. CCI ₆ , (CCI ₆) ²	-68.87	9.276	0.004	0.507
9. CRFlow _{4_7}	-65.49	12.653	0.001	0.135

Parameter	Relative Importance
PDO _{7_9}	-0.692
CCI ₆	-0.115
CPUE ₆	0.059
NPGO _{4_6}	0.023

10 models compared
Only variables with cross correlations
< 0.5 in same model

Survival forecast

SAR: 2009-2011

PDO index remarkably informative in earlier years

Other basin-scale (NPGO) and biological indices (June CCI & CPUE) provided more accurate indications of survival in recent years.

Summary - Snake River sp/su Chinook salmon

- Limited evidence for Match-Mismatch Ho but trend towards increased survival when juveniles entered further after biological transition
- Strong evidence for Growth-Mortality Ho (similar to mid-upper CR spring Chinook)
 - Marine growth and size at capture (20 d) >> size at emigration
 - Cohort size largely established after 20 d in ocean?
- CCI₆ and CR plume area_{4.7} best predictors of size at capture
 - Excludes low catch years (1998, 2001 & 2005)
- Hindcast: PDO_{7 9}, CPUE₆, CCl₆, and NPGO_{4 6} best predictors of SARs
 - Includes low catch years (1998 to 2008)
- Forecast: Basin-scale (PDO_{7_9}) poor predictor of SARs in forecast models, local, biological (CCl₆, CPUE₆) best

Acknowledgements

Survival in relation to CR Plume: 1999-2008

In general, positive relationship with plume size

Salmon Ocean Indicators (www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/index.cfm)

Interaction between river & coastal ocean

"good ocean" conditions compensate for "poor river/plume" conditions?

Similar pattern for Upper Col. River Su Fa Chinook salmon & plume volume - Miller et al. 2013