Restoration Approach in a Tidally Influenced Tributary Floodplain: La Center Wetlands Modeling, Design & Outcomes

Keith Marcoe, Paul Kolp: LCEP Caitlin Alcott: Inter-fluve

Focus of Presentation:

Role of hydrodynamic modeling in project feasibility & design. Three general modeling questions:

1. What controlling factors drive inundation of the site?

2. How will restoration actions affect site hydrodynamics?

3. How can we mitigate potential risks of design elements?

- Flood risk on adjacent properties
- Erosion, head cutting, etc.?

1. Project Description

Project Overview

Site: 450 acre floodplain reconnection

- Feasibility: 2011-2012
- Design: 2014
- Construction: Fall 2015

Project Sponsor: Lower Columbia Estuary Partnership

Engineering & Design: Inter-Fluve

Construction: Aquatic Contracting

Funding: BPA/LCFRB

Partners: Clark County, WDFW, Private Landowners

La Center, WA

Existing Site Conditions (Pre-Restoration)

43 Engineered channel from weir, looking downstream

43 Weir

from pond, looking downstream

43 Weir

43 Catfish/Weir Pond from weir, looking upstream

Levee along mainstem Site 43, looking upstream

43B Culvert looking downstream

Site Hydrodynamics: Controlling Factors

East Fork Lewis R. flow:

- Dominant Nov. Apr.
- Q1 approx. <u>4,000 cfs</u>
- Q2 approx. <u>9,000 cfs</u>

Columbia River tide:

- Dominant May July
- Q2 stage approx <u>17.7'</u>

Lewis River flow:

- Dam controlled
- Can backwater site when E. Fork is low flow

Site 43 Weir limiting fish passage

Day of Year

Design Objectives

- Increase inundation of wetlands and floodplains
- Improve/increase side-channel and off-channel habitat
- Improve fish passage
- <u>Don't</u> drain the existing wetland & pond
 <u>Don't</u> flood the neighbors

Proposed Conditions

2. Model Background

Tuflow FV Hydrodynamic Model

- Proprietary
- 2D numerical model (flexible time step, <u>stable</u>)
- Flexible bathymetric mesh

Model Physical Overview

Model Mesh (Existing Condition)

Model Mesh (Restored Condition)

Model Mesh (Restored Condition)

Observed — Modeled - Observed ----Modeled DS 0.5 -0.5 -1 US 0.5 difference Ŧ -0.5 MUVUN MA 43 Weir Pond 0.5 -0.5 -1 **43B** Floodplain 0.5 -0.5 -1 Model timestep (hrs)

Model Calibration/Verification: Results

WSE (ft)

3. Model Results

Restoration Impacts

Restoration scenarios modeled at feasibility stage:

	Modeled Restoration Actions									
Scenario	43:	43:	43:	43:	43B:	43B:				
	Breach	Remove	Lower	Meander	Remove	Breach				
	levee	Weir	Weir	channel	culvert	levee				
			<u>to 10'</u>							
1	X			X	Х	N/A				
2	X	Х				N/A				
3	X		X	X	X	X				
all	Х	Х		Х	X	X				

Proposed: replace weir w/ with constructed riffle to increase fish access and reduce potential fish stranding

Day of Year

Boundary Conditions to evaluate restoration benefits

Acres inundated to > 1 ft. depth

Summary of results for simulated Q1 flood:

Site Condition	Max. acres >1 ft. depth Site 43		Max. acres > 1 ft. depth Site 43B	Total Hours that 1 ft. depth is exceeded Site 43 Site 43B					
				Weir Pond	Wapato Pond	43 Floodplain	43B Wetland	43B Floodplain	
Existing		174	180	385	1450	230	145	125	
Restored		175	186	290	1644	226	151	150	

- primary benefit of restoration is a more natural flow regime (decreased stranding, increased water quality)
- Increased duration/extent of inundation is limited.
- Landowner concerns are addressed (pond retains water, flooding times similar)
- Q2 is similar

Question:

Does duration/extent of inundation improve under certain hydrologic conditions?

To answer:

Simulate regular flow event (Q1) on East Fork Lewis during lower Columbia River flow. Removes backwatering effect.

Low Columbia Flow Scenario Results:

Site 43 Existing: 14 acres > 1 ft. depth

Site 43B Existing: 1 acre > 1 ft. depth

Site 43 Restored: 60 acres > 1 ft. depth

Site 43B Restored: 67 acres > 1 ft. depth

Low Columbia Flow Scenario

A look at existing hydrographs shows when this condition occurred:

C. Current Velocities

Evaluate erosional/head-cutting risks and design requirements in breach channels for restored conditions

D. Flood Risk Analysis

Compare Q₁₀₀ stage/discharge for existing and restored conditions

Modeling Conclusions for Design:

- Project will provide significant restoration benefits while addressing landowner concerns:
 - Optimized riffle elev. maintains pond year-round while allowing increased inundation when E. Fork flow > ≈1,800 cfs and Columbia R. stage is below 11.5'
 - Breaches/barrier removal at both sites allow increased inundation and fish access, and decrease potential fish stranding
- Minimal risk of erosion in constructed channels due to velocity/elevation gradients and vegetation
- Minimize additional flood risk to adjacent landowners

Lessons Learned:

- In complex tidal/fluvial systems, hydrodynamic modeling is essential for evaluating restoration impacts if site hydrology is not known.
- Collaboration in the modeling process allows for a much more thorough investigation if project feasibility and design funding is limited.

Thanks, Questions?

a la la la la la la

