Modeling changes to the historic Lower
Columbia River Estuary using Delft3D
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Comparison: Historic and Modern LCRE

US Coastal
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Historic 19t century Digital elevation model for
the Columbia exists (digitized by Jen Burke et
al. at U. Washington)



Two Delft3D hydrodynamic models have
been developed:

1. 21st century model based on 2005
bathymetry (modified from USGS model
of Gelfenbaumé& Elias (2012)
2. 19" century model based on Burke
(2002) digitized bathymetry
(bathymetric surveys from 1868-1900)

Historic Columbia River model

* 5 sub-domains
«  Shelf/estuary, estuary, lower, upper
« ~50-200 m grid resolution

*  More refined in the estuary and upstream
near the Willamette River

« Tidal boundary condition
* Along the shelf
« M2,N2,S2,K1, P1, 01

Sample HCR model depths in the «  Discharge boundary conditions |
« The Dalles, 1878 USGS flow (Bonneville)

estuary do.ma'” ShOWIﬂg domain «  Oregon City, 1878 USGS flow (Morrison
decomposition boundaries Bridge)



1877 Columbia River Tide Data
Temporal Coverage for calibration
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Tide Changes: Preliminary Results
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M2 estimate for Astoria, HA window = 365 days

098 T I T b
o S8
o °°c‘>%
0.96 o %80
°6°%
o 6 © 5
0.94 o %% °
o ® & ©
8? o ©o0 8
- o =5
£ 0.92 o &ooooa’
0
o2 o %
098 ©o° o |
° o
® % o
0880 ° G
o Astoria
© Tongue-Point

81%60 1880 1900 1920 1940 1960 1980 2000 2020
Year



1 BN N Nl

N2 estimate for Astoria, HA window = 365 days
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O1 estimate for Astoria, HA window = 365 days
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S2 estimate for Astoria, HA window = 365 days
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One way to tease apart local and basin-scale changes is to look at
the locally produced, non-linear shallow-water overtides

SF Bay
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Friction on a tide wave is larger when:

(1) Water is shallow (e.qg. tidal flats)

(2) Bathymetry (e.g., dunes) is pronounced
(3) River Flow is larger

(4) Internal shear larger

Friction extracts energy from tidal
constituents and puts it into higher
‘harmonics’, or ‘overtides’. For example,
the twice daily M2 lunar tide produces an
M4 (4 times daily) overtide.

Both SF and especially Astoria were
much more ‘frictional’ in the past.

Spectral energy at the 4 cpd frequency
much larger in the 19" century



Overtide variation

M4 estimate for Astoria, HA window = 365 days
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One hypothesis

Deepening of the Elbe River, Germany since 1900

Nttt Local, anthropogenic effects such as
- 1957 1964 1974 1998 2007 channel deepening and streamlining
; 1937 1962 1969 197 1999 20107 . .

S e S are in many cases a primary cause of

long-term change.

K
KN -10,0 m

Geschwin- 13

digkeit der 020020 g 37 ?Fﬁlib 2 Depth drlveﬂ by Shlp Slze

Vertiefuna [m/Jahr]

EVOLUTION OF CONTAINER SHIPS

Pre-  1971-80 «481-90
1960

MEAN SEA LEVEL

=207

38-41 ft 38-42 ft 42-46 ft
Present tops of (11.6-12.5 m) (11.6-12.8 m) (12.8-14m)
Harding, Shag, and Arch Rocks DRAFT, IN FEET (METERS)




1 BN N Nl

What do other studies suggest is important?

Schematic of
a convergent
estuary

In many convergent estuaries, the first order
momentum balance is between the pressure
gradient and friction (e.g., Friedrichs & Aubrey,

1994):.
) ﬂ=—g%-F.

F=%E”F£u=ru

Tidal heights become a balance between the
amplifying effects of convergence and the
damping by friction.

- Observation: Increasing depth has a similar
dynamical effect as decreasing drag coefficient
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But tides in estuaries are complicated.
Factors important to tidal propagation and
overtide production include:

1. Nonlinear tidal asymmetry (production of . e
overtides) is controlled by the ratlo of

acceleration/friction;
y= laniello # m >
(lanniello, 1577; this e inverse Strouhal

number of Burchard 2009)

2. Resonance 2 =4L; w/(gH)”

Internal tidal asymmetry (Simpson #)
£ _foH

 fgH? df
*cutd )

Other factors such as ratio of intertidal
flats/channel volume (Friedrichs and

Aubrey, 1988) and ratio of nonlinear to
local acceleration (laniello, 1979) can be

imnortant
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Observations in Columbia River

1. M2 increased in estuary (km O-
30) between 1877 and 1941

2. M2 and S2 increased in the tidal
river between 1941 and the present

3. Overtides decreased in estuary
between 1877 and 1941

4. The ‘overtide’ maximum shifted
upstream



The changed constituents produce
altered tidal behavior

1. The system is less frictional, as
observed in the M4/M22 ratio

2. Spring-Neap ratio has increased
(As system becomes less frictional,
S2 becomes less damped by M2;
see e.g. Godin, 1997)

3. The K1 behavior is mixed. More
analysis needed
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19th Century Model:
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Model: A Delft3D model is
being made to determine the
causes of change.

The model is currently
calibrated to tide data and does
as well as the modern model.

Note: The M2 maximum has

moved upstream from Astoria
towards Astoria Tongue Point/
Cathlamet Bay.

Hence: The Tongue Point tide
data has actually changed
*more* than the prevous
graphs suggested.



Amplitude (m)

K1, M2, and S2 Tides
Sep - Oct 1877: Low Flow
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Preliminary Results
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Results from an idealized version of
the 19t cnetury model:

1. Increasing depth produces
greater constituent amplitudes

2. Overtide maximum is moved
upstream

3. M4/M22 ratio forced
downwards everywhere

4. Spring Neap ratio increased

5. System more diurnal, but not
everywhere.



Spring Tide inundation

Youngs Bay, Modern Inundation Youngs Bay, Historic Inundation



Spring Tide inundation

Cathlamet Bay, Modern Inundation Youngs Bay, Historic Inundation



3 Videos:
1. Water levels
2. Salinity

3. Bed stress

Preliminary Results
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Next Steps

1. Determine how much tides have affected wetland habitat, and where

2. Determine the primary reasons for altered long-wave behavior
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Future Steps:

200 e ARSS ” --Change bathymetry and see what happens.
15 -- Simulate extreme events (e.g., 1876 flood).
10 ol e What would that flood look like today,

5&’@7“\}/"}' Pl \::m under both ‘virgin’ flow and regulated scenarios?
.5 1862

OWGO 120 180 240 300 360 --Water Temperature and Sa“nlty Intrusion

Year day Although we do not have salinity data, we

Dotted-Vancouver: have a treasure trove of temperature data,
Solid: Astoria including top/bottom from Ft. Canby, 1883-1888.

Point would be: How has the

Water Temperature much temperature/salinity climate of wetlands changed
larger than 1850s... over time?

Gradient between upriver Finally: What lessons are there for
and estuary switched (river climate change?

used to be colder)



Final thoughts (some things to think about)

An incomplete list of long-term changes to estuary boundary conditions includes:
--tides
--sea level
--Meteorological changes (e.g., NAO index)
--river flow
--sediment input
--nutrient input
--bathymetry

--habitat
--PP7?7?

Changes may be quite obvious, or be subtle and occur over a long time (e.g.,
changes to Columbia tidal components).

Changes often produce a non-linear cascade of events. Everything affects
everything.

Moreover, both natural and anthropogenic change are often wrapped together.

Tide data are the oldest oceanographic data sets that can address
these issues - Recovery of these data is important
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Tide Changes: Preliminary Results

Approximate Maximum Tide amplitude, 19t century: M2 +S2 +N2 + O1 +K1

1.92m

(Maximum Difference of 3.84m between high and low tide)

Approximate Maximum Tide amplitude, 215 century: M2 +S2 +N2 + O1 +K1

2.05m
(Maximum Difference of 4.1m between high and low tide)

Greater tidal range is as much as 1 foot larger now than in 19t century.
Impacts both the high and the low waters.

However, This needs to be considered within the spatial
variation of tides in the estuary.



