TRAJECTORIES OF ECOSYSTEM RECOVERY IN OLIGOHALINE TIDAL WETLAND RECONNECTION RESTORATION PROJECTS

Sarah Kidd Alan J. Yeakley Portland State University Columbia River Estuary Workshop Astoria, OR - May 30, 2014

A little about me

2011

- Working in the LCRE since 2008

Portland State University, OR M.S. Environmental Science Thesis: Riparian wetland response to livestock exclusion in the Lower Columbia River Basin

–Currently 3rd yr PhD student –Portland State University –NSF Fellowships • IGERT - Ecosystem Service • GK12 - Science Inquiry

Talk Outline

Background: What, Where, How
First Year Preliminary Results
Future Research Direction

Young's Bay Watershed, Oregon -Land Conversion - 97% Loss of Tidal Wetlands

How long does it take to restore:

Diked Pasture

Tidal Wetland

Objective: to identify the rate of ecosystem service recovery in tidally reconnected oligohaline (salinity 0.5-5 ppt) wetlands on historically diked agricultural lands in the Columbia River Estuary

How long does it take to restore:

Diked Pasture

Tidal Wetland

Legacy of restoration in Young's Bay allows for a space for time - chronosequence study of oligohaline tidal wetland restoration outcomes

Map of Tidal Restoration Wetlands in Young's Bay Watershed

State of Tidal Wetland Restoration

Hypothesized Restoration Trajectories of Tidal Wetland Ecosystems

Zedler, J. B., and J. C. Callaway. 1999. "Tracking Wetland Restoration: Do Mitigation Sites Follow Desired Trajectories?" *Restoration Ecology* 7 (1): 69–73.

State of Tidal Wetland Restoration

Hypothesized Restoration Trajectories of Tidal Wetland Ecosystems

Primary Wetland Restoration Trajectory Studies:

Study Citation	United States Coastal Tidal Wetland Location
DeBerry and Perry 2012	East - Fresh
Craft et al. 2002	East-Brackish
Craft et al. 2003	East - Salt marsh
Warren et al. 2002	East - Salt marsh
Morgan and Short 2002	East - Salt marsh
Tanner et al. 2002	West - Fresh/Oligohaline
Gray et al. 2002	West- Brackish and Oligohaline
Simenstad and Feist 1996	West- Brackish and Oligohaline
Simenstad and Thom 1996	West - Salt marsh
Zedler and Callaway 1999	West - Salt marsh
Thom et al. 2002	West-Salt marsh
Matthews et al. 2009	Mid-west - Fresh (non-tidal)
Simenstad et al. 2006	Review of Studies
Spencer et al. 2012	Review of Studies

Hypothesized Restoration Trajectories of Tidal Wetland Ecosystems

- H1 Plant Community Structure and Biodiversity: Showing initial (0-5 years) shifts toward reference conditions, with near reference levels >10 years and older
- H2 Plant Biomass: Showing increasing productivity (cover & height -biomass) with the age, reaching reference levels during the first 4-8 years
- **H3** Soil development: Showing surface soil bulk density and organic matter levels taking > 20 years to reach reference levels

Site Surveys - Methods

3 - 6, 100 m Transects were randomly established along the elevation gradient of each site (n=60 - 120 1m² quadrats per site)

Every 5 meters along each transect:

- Species cover, richness & height, topography-elevation Every 20-30 meters (n=12 per site):
- *Biomass, soil OM and BD, sediment accretion* Every site's main tidal channel:
- Hydrology & water conditions: water surface level elevations, temperature, salinity

United State Geological Survey (USGS) tidal wetland monitoring and the Roegner et al. protocols (Roegner et al. 2009, USGS 2011).

Many thanks to all the volunteer hours by Luke Murphy and Meredith Condon

Total Species Richness

Native and Non-native Species Richness

Wetland Indicator Status- Relative Abundance (%)

Site Topography

Elevation (NAD 88) Meter

Plant Abundance - Biomass

Biomass - Dry Weight (g/.10 m²)

Soil Development

Bulk Density - Compaction (g/cm³)

Soil Development

Soil Organic Matter (%) - Loss on Ignition

Preliminary Timescales of Response

Preliminary data and field observations:

- Years 1 5 appear to be a critical time for wetland plant community development and biomass accumulation
- Between 7 25 years appears to be critical time for soil bulk density reduction
- Between 25 55 years appears to be critical time for soil organic matter development
- Summer 2014 add 3yr, 5yr, 9yr, 34yr, 44yr old sites and a second reference site

Why does this matter? Adaptive Management and Planning Inform the expectation and assessment of restoration goals over appropriate time scales

What is the biggest driver of wetland plant and soil development in these systems?

Is it inundation regime?

 How are small variations in restored tidal wetland site hydrology influencing vegetation and soil development?

> STUDY 2 (SUMMER 2013-15): IDENTIFYING HYDROLOGIC INUNDATION CHARACTERISTICS DRIVING TIDAL WETLAND PLANT COMMUNITY RESTORATION AND ECOLOGICAL DEVELOPMENT

How will changes in inundation duration and frequency (from management or SLR) influence plant community assemblages in these restored wetlands?

Thank you for listening!

I better get back to work 😳

Research Sponsors

SWS

SOCIETY FOR ECOLOGICAL

Land Owners & Partners

COWLITZ INDIAN TRIBE

PORT OF ASTORIA

City of Seaside

Lower Columbia

Estuary Partnership

SEF

Big thanks to all these folks for helping me make it happen!

Email: sarahkidd@pdx.edu Twitter: @science_kidd Web: SarahKidd.Info

Site Topography

Elevation Ranges of Common Dominant Plant Species By WIS

Lewis and Clark National Historical Park Restoration Sites - Kidd & Yeakley - Survey 2013

Wallooskee-Youngs Confluence Project - Kidd & Yeakley - 2013 Survey Map

Port of Astoria - Airport Mitigation Bank - 1988 Breached Site - Kidd & Yeakley - Survey 2013

Columbia Land Trust - Restoration Sites - Kidd & Yeakley - Survey 2013

Relative Cover (%) - Wetland Indicator Status

Dominant Species

NMDS Ordination: Site Comparison Bray Curtis Similarity - Species Abundance (Stress: 0.08)

Native and Non-native Species Abundance

Study Sites Elevation Range - 2013 Vegetation Survey

State of Tidal Wetland Restoration In the Lower Columbia River Estuary

- Mitigation credits based on the <u>potential benefits</u> the project is assumed to provide after restoration
- Assumed that tidal restoration sites will <u>naturally follow</u> <u>restoration trajectories</u> toward <u>self sustaining reference</u> <u>conditions</u> after initial tidal reconnection is completed (*Thom 1997, Thom et al. 2005, Roegner et al. 2009, Borja et al. 2010, Thom et al. 2010, ERTG 2011).*
- Need more evidence to support this theory (e.g., Zedler 2000, Hilderbrand et al. 2005, Borja et al. 2010, Mossman et al. 2012, Smith and Warren 2012).