

Wetland Restoration Trajectories and Long-Term Ecosystem Monitoring: A Tidal Wetland Story

Sarah Kidd and Matthew Schwartz CREC 2018

Discussion Outline

- Large scale monitoring projects
- Data synthesis
- Restoration goals and assumptions
- How do we compare recovery across sites?
- How soon can we except recovery?
- What have we learned so far?
- Moving forward and adapting

Large Scale Monitoring Projects Lower Columbia River

- Action Effectiveness Monitoring and Research (AEMR, Restoration – Multiple Years of Data)
- EMP (Ecosystem Monitoring Program, Ecological Status and Trends Monitoring)
- Kidd Dissertation (Restoration- Chronosequence)

Are restoration sites following a trajectory?

What is the scientific basis for all of these restoration efforts?

Theory of ecological restoration-recovery

Thom et al. (2010) describing a restoration trajectory

Further Citations: van der Valk 1981, Keddy 1992, SER 2004, Wilcox 2004, Apostol et al. 2006, Hilderbrand et al. 2005

Methods

- Restoration Type: Hydrologic Reconnection
- Sites and Years of Data
 - Youngs Bay Study (2013-14'): 11 restoration sites ages ranging from 1-54 years post-restoration, 3 reference sites, 2 prerestoration
 - AEMR (2013-17'): 9 restoration sites with paired reference sites, data from pre-restoration (8 sites) to 1 year post (9 sites), 3 years post (7 sites), and 5 years (1 site) post-restoration

Monitored Restoration and Reference Wetlands in the Lower Columbia River

used in this analysis

Methods

- Combining data across studies
 - Vegetation data collected at all the restoration and reference sites using similar methods (Roegner 2009)
- Summarized by native vs. non-native species using USDA species status classifications
- Native and Non-native Relative Cover

Plant Community Native and Non-native Species Dominance

Impacts to restoration trajectories

Plant Community Native and Non-native Species Dominance

Impacts to restoration trajectories

Non-natives limit/impact:

- Habitat Complexity & Diversity
- Detritus Quality Nutrient Cycling
- Macroinvertebrate Communities

(e.g. Mabry and Dettman 2010, Lavergne & Molofsky 2010, Kidd & Yeakley 2015, Hanson et al. 2016, Klopfenstein 2016)

Grow at the exclusion of natives – reduces native species richness

Monitored Restoration and Reference Wetlands in the Lower Columbia River

used in this analysis

Relativized Response Ratio (RR)

 $RR = \ln(\frac{Mean Restoration Site Value}{Mean Reference Site Value})$

- Values close to 0 = most similar to Reference Site
- Calculate for each year data is collected
- Graph RR values vs. Restoration Year
- See Meli et al. 2014 and Lajeunesse 2015 for details
- Allows for meaningful comparisons of recovery across wetlands throughout the estuary
 - Across vegetation zones, i.e. RCG has a much wider elevation band as you move up river (see zones outlined by *Diefenderfer, Borde, and Cullinan 2013*)

Restoration Trajectories

Native/Non-native Cover Predicted 5-10 yr

Response Ratio Relative Non-Native Cover vs. Time Post-Restoration

Native vs. Non-native Plant Community Recovery

- Question site recovery when native and non-native sp. cover are <u>not within ±25% (± 0.25 RR)</u> of reference conditions by years 3-5 post restoration
 - Are reference conditions a reasonable expectation?
 - Did the restored site hit the <u>target hydrology</u> to reduce invasive species (i.e. Reed canarygrass)?
 - <u>Scrape down</u> soil conditions can make plant recovery slow
 - Low soil organic content
 - Low nutrient retention
 - High bulk density (compaction)
 - Seed bank

Restored low elevation marsh areas have higher similarity to reference marshes and less non-native species than higher elevation marsh areas.

Wetland Plant Community Development

Youngs Bay Examples

Carex lyngbyei Hornem., lyngbye's sedge, and Schoenoplectus lacustris (L.) Palla, bulrush Phalaris arundinacea, reed canarygrass, and Juncus effusus subsp. effusus, common rush

Youngs Bay Restoration Sites

Non-native Dominant High Marsh

Locations above mean high water

- Higher soil ORP (hydrologic indicator)
- Lower soil pH
- Lower soil Organic Matter
- Higher soil Bulk Density
- Lower soil Salinities

Significant Differences Compared to Reference Wetlands

All characteristic of pre-restoration wet pasture conditions

Phalaris arundinacea, reed canarygrass, and Juncus effusus subsp. effusus, common rush

Soil conditions need to be considered

- -Pre-restoration conditions
- -Impacts of soil scrape down -Recovery timelines

Moving Towards Understanding Recovery

- Does the site have similar restored hydrology to the reference site?
 - Restored/Reference condition comparisons should focus on matching wetland hydrologic zones based on duration, frequency, and timing of inundation
 - Monitoring and comparing hydrologically similar areas within reference and restored sites for tracking recovery
 - Different trajectories of recovery can be expected and adaptive management will likely be needed

Future Planning and Monitoring

- Consider
 - Wetland hydrologic zones being restored
 - Mud flat, low marsh, high marsh, shrub
 - Impact of scrape down
 - Removing soil organic matter
 - Compacting soil
 - Soil texture
 - Seed banks (native & non-native)
 - Local native seed dispersal?
 - Creating goals that are measurable
 - Such as within a +/- 0.25 Response Ratio in 5 yrs. HOW? - Monitor Plant Cor

HOW? - Evaluate soil conditions and adjust plans and/or expectations

recovery

HOW? – use hydrologic

modeling to predict

inundation and

HOW? - Evaluate seed bank conditions and local seed sources, plan to seed or control non-natives as needed

HOW? - Monitor Plant Communities and Soil Conditions

accordingly

Next Steps

- Compare wetland recovery within hydrologic zones
 - Identify if/why restoration targets aren't being met
 - Evaluate soil conditions
- Use monitoring data to help adaptively manage recovery
- Response Ratios can be helpful to compare the recovery of multiple ecological indicators across sites

Questions?

0

THANK YOU FOR LISTENING! SKIDD@ESTUARYPARTNERSHIP.ORG

Thank you!

BONNEVILLE

