Geographic Variation in Puget Sound Tidal Channel Geometry Developing a Tool for Restoration Planning, Design, and Monitoring

This work funded by the WDFW ESRP

W. Gregory Hood Skagit River System Cooperative

1. Methods and Theoretical Background

Allometry of marsh islands and channel geometry.

Landscapes are fractal, i.e., scaling relationships exist between different landscape elements, e.g., marsh islands and tidal channels.

Note: scaling relationships are power functions that can be linearized by log transformation,

 $P = cA^b \rightarrow log(P) = log(c) + b log(A)$

Benefit: Prediction of a suite of useful channel geometries not typical of hydraulic geometry.

Goal: Develop predictive models for habitat restoration design and planning

<u>Deltas</u>

Lummi

Nisqually

igoons	<u>N</u>
erson	1
orth Bluff	1
ace	1
ak Harbor	2
eabeck	2
norndyke	3
abob	6
oint Julia	1

2

2. Puget Sound Results

Similar scaling functions between marsh island area and a suite of channel planform metric for tidal marshes throughout Puget Sound

Non-linear cumulative effects are evident for total channel length, total channel surface area, and the surface area of the largest channel draining a marsh island (i.e., allometric exponents > 1.0)

3. Examining regression intercepts

Stepwise multiple regression of ANCOVA elevations (y-intercepts) with wave height (Finlayson 2006), drainage basin area (Czuba et al. 2011), and tide range (NOAA).

Parameter	Predictor	P-value	R ²
Channel count	Tide range,	< 0.0007	0.77
Total channel area	Wave height, tide range	<0.002	0.72
Total channel length	Wave height,	<0.0005	0.79
Total magnitude	Wave height, tide range	<0.002	0.84
Area of largest channel	Wave height	<0.004	0.56
Length of largest channel	Wave height, tide range	<0.002	0.72
Magnitude of largest channel	Wave height, tide range	<0.004	0.82
Tributary count of largest channel	Wave height, tide range	<0.003	0.71

TIDE +, WAVE -

4a. Application to Restoration Design and Planning

Smith Island Conceptual Design vs.

Model Predictions

Predicted (95%//80% CL) Pla				
Channel Count	46 (14//22)	8		
Total Length	47,172 (11,095//18,566)	14,021		
Largest chan. L	14,034 (3,231//5,448)	9,060		
Largest chan. Tribs	41 (10//17)	23		
Total Area	13.0 (56.0//33.3)	14.1		
Largest chan. A	4.9 (29.1//15.5)	10.0		

Thanks to Bob Aldrich Snohomish Co. Public Works Dept. Non-linear cumulative effects have significant implications for restoration planning, e.g., "splitting the baby" negotiations, SLOSS decisions, mitigation for loss.

E.g.,	<u>Site size</u>	Total Channel Area	Total Channel Length
	100 ha	5.81 ha	24,173 m
	50 ha	2.03 ha	10,093 m
	65 ha		14,080 m
	75 ha	3.78 ha	

4b. Application to Restoration in the Columbia River Estuary!

ANCOVA F_{2,89} (slopes) = 3.17: p < 0.05[?]

Summary

- 1. Landform allometry is useful tool for restoration planning, design, and monitoring many reference sites possible.
- 2. Tidal channel geometry is affected by marsh area, tide range, and wave energy.
- 3. Allometry of channel count for Columbia River marshes is affected by distance upriver (≈ tide range) and forest/shrub cover.
- 4. Non-linear cumulative effects exist: bigger marsh area is better.
- 5. Restoration practitioners tend to underestimate the number of tidal channels a site should have, which may affect site accessibility.

