Geographic Variation in Puget Sound Tidal Channel Geometry

Developing a Tool for Restoration Planning, Design, and Monitoring
This work funded by the WDFW ESRP

W. Gregory Hood

Skagit River System Cooperative

1. Methods and Theoretical Background

Allometry of marsh islands and channel geometry.

Landscapes are fractal, i.e., scaling relationships exist between different landscape elements, e.g., marsh islands and tidal channels.

Note: scaling relationships are power functions that can be linearized by log transformation,

$$
P=c A^{b} \rightarrow \log (P)=\log (c)+b \log (A)
$$

Benefit: Prediction of a suite of useful channel geometries not typical of hydraulic geometry.

Goal: Develop predictive models for habitat restoration design and planning

2. Puget Sound Results

> Similar scaling functions between marsh island area and a suite of channel planform metric for tidal marshes throughout Puget Sound

> Non-linear cumulative effects are evident for total channel length, total channel surface area, and the surface area of the largest channel draining a marsh island (i.e., allometric exponents > 1.0)

$\square S F$
$\triangle N F$
\times Snohomish
\diamond Dosewallips

- Lummi
\square Nooksack
OUnion River
- Lagoon
\diamond Tahuya
\triangle Duckabush
\triangle Dewatto
O Hama-Hama
- Hama-Hama
+ Quilcene
+ Skokomish
\times Stillaguamish
O Nisqually

3. Examining regression intercepts

Finlayson 2006

Stepwise multiple regression of ANCOVA elevations (y-intercepts) with wave height (Finlayson 2006), drainage basin area (Czuba et al. 2011), and tide range (NOAA).

Parameter	Predictor	P-value	R^{2}
Channel count	Tide range, wave height Wave height,	<0.0007	0.77
Total channel area	tide range Wave height,	<0.002	0.72
Total channel length	tide range Wave height,	<0.002	0.79
Total magnitude	tide range	0.84	
Area of largest channel	Wave height	<0.004	0.56
Length of largest channel	Wave height, tide range	<0.002	0.72
Magnitude of largest channel	Wave height, tide range Wave height,	<0.004	0.82
Tributary count of largest channel	tide range	0.71	

TIDE +, WAVE -

4a. Application to Restoration Design and Planning

Non-linear cumulative effects have significant implications for restoration planning, e.g., "splitting the baby" negotiations, SLOSS decisions, mitigation for loss.

E.g.,	Site size	Total Channel Area
$\mathbf{1 0 0}$ ha	$\mathbf{5 . 8 1}$ ha	$\mathbf{2 4 , 1 7 3} \mathbf{~ m}$
50 ha	2.03 ha	$10,093 \mathrm{~m}$
65 ha		$14,080 \mathrm{~m}$
$\mathbf{7 5}$ ha	3.78 ha	

4b. Application to Restoration in the Columbia River Estuary!

Emergent vegetation, mostly Russian Island complex

Dense forest/shrub, mostly upriver

Summary

1. Landform allometry is useful tool for restoration planning, design, and monitoring - many reference sites possible.
2. Tidal channel geometry is affected by marsh area, tide range, and wave energy.
3. Allometry of channel count for Columbia River marshes is affected by distance upriver (\approx tide range) and forest/shrub cover.
4. Non-linear cumulative effects exist: bigger marsh area is better.
5. Restoration practitioners tend to underestimate the number of tidal channels a site should have, which may affect site accessibility.

