Restoration of Cold Water Refugia in the Upper Columbia River Estuary

*Chris Collins, Catherine Corbett, Keith Marcoe, Paul Kolp

Mainstem thermal regime during outmigration

Potential benefits and impacts of thermal refugia

- Numerous potential benefits and impacts associated with thermal refugia, e.g., predation.
- Diversity & Resilience:
 - Five life history strategies documented in single populations of Chinook and coho (Reimers 1973; Craig 2010).
 - A diversity of available habitats, e.g., varied thermal conditions, supports a variety of species and life histories, which is important for salmon populations that will be resilient in the face of ecological disturbance.

Characteristics of thermal refugia

Organized by attributes presented in *Ecological Assessment Criteria for Restoring Anadromous Salmonid Habitat in Pacific Northwest Estuaries* (Simenstad and Cordell, 2000)

Opportunity/Access:

- Adjacent to mainstem
- Detection: Plume must extend into the migratory corridor
 - Temp. differential (2-7°C cued adults above Bonneville) (Keefer et al. 2011)

Capacity:

- Temperature: physiological: <19°C (Bottom et al. 2011)
 - protection from predators: <19°C (Moyle 2002)
- Depth: minimum of ~0.5m for juveniles (Bottom et al. 2005)
- Horizontal extent: uncertain

Design Criteria: - <17°C (19°C minus 2°C diff.)

- >0.5m depth

- max. spatial extent practical

Example Projects

What actions reduce the effects of climate change & promote resiliency?

- 1. Decrease stream temperatures
- 2. Increase base flow
- 3. Increase resiliency (i.e., allow for expression of full range of life histories)

Source: Beechie et al. 2012

Example Projects

Example Projects – Example 1: restore instream flow (reduce withdrawals, water rights acq.)

Example Projects – Example 1: restore instream flow (reduce withdrawals, water rights acq.)

Example Projects – Example 2: riparian restoration

Example Projects – Example 3: longitudinal connectivity (barrier removal)

Example Projects – Example 3: longitudinal connectivity (barrier removal)

Example Projects – Example 4: lateral connectivity (reconnecting floodplain features)

Example Projects – Example 5: instream rehabilitation (mainstem structure to expand plume)

Example Projects – Example 5: instream rehabilitation (mainstem structure to expand plume)

Example Projects – Example 5: instream rehab. (structural diversity to increase capacity)

Current and Potential Thermal Refugia in Reach H

Current and Potential Thermal Refugia in Reach H

- > EP and USFS completed a Watershed Restoration Action Plan for Reach H
- Results included......
 - Reduce/eliminate 7 stream diversions, 5 of which likely effect temperature

Remove/retrofit 3 passage barriers that would provide longitudinal connectivity to thermal refugia Lower Columbia

Restore lateral connectivity at 3 sites

Riparian plantings at a variety of locations

Estuary

Thanks....

C. Corbett, K. Marcoe, LCEP Mark Kreiter, USFS Matt Keefer, U. of Idaho Tim Beechie, NMFS

Questions?

Chris Collins
Lower Columbia Estuary Partnership
(503) 226-1565, Ext.235
ccollins@estuarypartnership.org

