Prey availability and feeding ecology

 of juvenile salmon in coastal watersbased on stomach content and stable
isotope analyses

Ric Brodeur (NWFSC) Julia Adams (REU)
Elizabeth Daly (OSU) and Todd Miller (MI)

Research Objectives

1. To compare prey field communities from nets to salmon diets
2. To test whether stable isotopes of carbon and nitrogen are a good predictor of diet using a Bayesian mixing model

Outline

- NOAA Miller/Freeman Survey (June 2010)
- Salmon Diet Composition
- Comparison Of Catch and Salmon Diets
- Stable Isotope Results
- Stable Isotope Mixing Models

NOAA R/V Miller Freeman Survey

Nets Used

Methot
Nordic

Bongo

The Nets

Opening area $\left(\mathrm{m}^{2}\right)$
Area of filtering cone $\left(\mathrm{m}^{2}\right)$ Avg. Dist. travelled (m) Avg. Vol. filtered $\left(\mathrm{m}^{3}\right)$

Herring	Nord
37.2	336

1784 1910
16440
232085

Nordic

Chinook and Coho Diet Analysis

Chinook and coho diets were similar

Chinook Coho

Z77 Amphipoda
$\triangle 1 \nabla$ C. magister
$\square \square$ C. oreg/prod
奴 Copepoda
$\triangle \triangle$ Cyprid larvae ㄸㅣㅣInsecta
\square Non-Cancer crab
Pteropoda
Osmeridae Sandlance juv.
Rockfish juveniles
Unid. fish

ANOSIM

P = 0.59

Salmon diet composition

 different than net compositions

Stable Isotopes as Natural Tracers

Carbon atom

Stable Isotopes in Ecological Studies

- Indicator of source production
- Ratio changes little up the food chain

Nitrogen isotopes

- measure of relative trophic level
- changes approx. 3.4 (o/oo) per trophic level

Stable Isotope Analysis

Stable Isotope Analysis

Elemental analyzer coupled to a stable isotope ratio mass spectrometer

Stable Isotope Biplot

Stable Isotope Mixing Models: C \& N

Fry (Stable Isotope Ecology, 2006)

$$
\begin{aligned}
& \delta^{13} \mathrm{C}_{\text {consumer }}=\mathrm{f}_{1} \delta^{13} \mathrm{C}_{\mathrm{a}}+\mathrm{f}_{2} \delta^{13} \mathrm{C}_{\mathrm{b}}+\mathrm{f}_{3} \delta{ }^{13} \mathrm{C}_{\mathrm{c}} \\
& \delta^{15} \mathrm{~N}_{\text {consumer }}=\mathrm{f}_{1} \delta^{15} \mathrm{~N}_{\mathrm{a}}+\mathrm{f}_{2} \delta^{15} \mathrm{~N}_{\mathrm{b}}+\mathrm{f}_{3} \delta^{15} \mathrm{~N}_{\mathrm{c}} \\
& \mathrm{f}_{1}+\mathrm{f}_{2}+\mathrm{f}_{3}=1
\end{aligned}
$$

—Bayesian Mixing Model (Stable Isotope Analysis in R (SIAR))

What Data Do We Need To Use Mixing Models?

Marine Prey Constitute The Largest Proportional Prey Contribution to Both Chinook and Coho Diets

Based on 5×10^{6} Iterations of Model for Each Species

Conclusions

- Chinook and coho juveniles have similar diet composition
- Stable isotopes indicate that salmon have recently consumed mostly marine prey although estuarine and hatchery contributions are still evident
- Stable isotopes can be used to estimate diet proportions, but we need to take into account stable isotope turnover rates (34 days in juvenile salmon)

Future Studies

- Sample stable isotopes along gradient in salmon from hatchery to coastal ocean, along with potential prey from each habitat
- Examine tissues (liver or blood) with faster turnover rates than muscle tissue
- Compare hatchery vs. wild or fish from different stocks
- Look at other isotopes $\left({ }^{34} \mathrm{~S}\right)$ and use in a mixing model

Acknowledgements

- Greg Hutchinson, Marisa Litz, Steve Pacella, Andi Stephens, and Don Phillips
- Jennifer McKay
- Bonneville Power Administration
- National Science Foundation REU Program
- Funding provided by Bonneville Power Administration and Northwest Fisheries Science Center (BiOp)

Bayes' Rule

$\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$ P(B)

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ the posterior, is the degree of belief in A
P(A)
$=$ the prior, is the initial degree of belief in A
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})$
$=$ the quotient, represents the support B provides for A $\mathrm{P}(\mathrm{B})$

Bayesian Approach to Mixing Models

