RYKAØUAS

Using an Unmanned Aerial System (UAS) to Collect Hyperspectral Imagery of Tidal Wetlands

Amy B. Borde¹, Andre M. Coleman¹, G. Curtis Roegner², Robert Erdt³, Joe Aga³, and Carla Cole⁴

Pacific Northwest National Laboratory
NOAA NMFS
RykaUAS, Inc.
National Park Service

Background and Goal

Wetlands are important for juvenile salmonids and other ecosystem functions.

68% loss of tidal wetlands >20,000 hectares

Large-scale restoration program requires comprehensive monitoring.

Goal: Develop UAS with hyperspectral camera to automate wetland classification and inform restoration monitoring.

Study Site

Astoria

44 ha restoration site

Columbia River Estuary

Portland

235 River kilometers

Bonneville Dam

Approach

- Equip a UAV system with a hyperspectral imager
- Conduct field measurements and build spectral library
- Develop analytics to automate classification
- Test flight methods at additional tidal wetland systems
- Establish protocols to aid evaluation of wetland restoration trajectories and management decision making

This work is licensed under a Creative Commons Attribution 3.0 Unported License. thor: http://commons.wikimedia.org/wiki/User:Arbeck

- Pinewood
- Grassland
- Red Sand Pit
- Silty Water

Hyperspectral

Spectral Library

Catalog of object-specific spectra¹

Data Acquisition Spectral signatures of vegetation and other features:

Hyperspectral Imager and Aircraft

BaySpec OCI-100 BP150

- Pushbroom Hyperspectral Imager
- Spatial Pixels: 2000 pix x scan-length
- Spectral Range: 400-1000nm
- Spectral Resolution: 5nm
- Spectral Bands: 115
- Speed: 60 fps

DJI Matrice 600 Pro (M600)

- Payload of 6 kg
- Ronin MX 3-axis gimbal for stabilization Custom built mounting plate for sensor and
- onboard computer
- Modified battery system to power the sensors and on board computer
- Remote connection to the computer allowed remote shutter control, diagnostics during flight, and sensor calibration

Aircraft Integration

Flight Details

- Used Universal Ground Control Software¹ to plan flight transects
- Maintained low velocity between 1.0 1.8 m/second for OCI sensor
- Calibrated each flight for atmospheric conditions including using a calibrated reflectance panel for white balance
- Flight time limited due to heavy payload
- Segmented flights to maximize flight time
- Also captured true-color (RGB) orthrectified imagery in a separate flight

Flight altitude = 70 mGround resolution = 2 cm

Flown in June and September

Field Data

- 16 ground control points for georeferencing
 - Real-time kenimatic (RTK) GPS
- 794 reference points collected
 - o ID plants to species
 - Estimated percentage of multiple species
 - Documented condition of plants (e.g., lying down, flowering, or dead)

1. Georeferencing

- 2. Habitat data processing
- 3. Hyperspectral pre-processing
- 4. Spectral library development

Combined based on the flight line

5. Image classification

Image "strip"

Manually georeferenced based on true-color orthomosaic

25 m

Image "chip"

>1000/site

- Georeferencing 1.
- Habitat data processing 2.
- Hyperspectral pre-processing 3.
- Spectral library development
- 5. Image classification

45 Classes:

- single species
- co-dominants
- species conditions

- Developed 77 habitat classes based on field collected **GPS** data
- Delineated 258 polygons based GPS points and ortho imagery

RGB high resolution image

Segmented image using objectbased image analysis (OBIA) using ArcGIS Pro

Training polygons: 363 Reference polygons: 353

- Georeferencing 1.
- Habitat data processing 2.
- Hyperspectral pre-processing 3.
- Spectral library development
- Image classification

- Noise and Dimensionality Reduction
 - Minimum Noise Fraction (MNF)
 - Uses PCA to spectrally and spatially separate noise
 - Data dimensionality reduction
 - ordered by signal to noise ratio
 - Lower bands contain spatial structure and most important information
 - Higher bands contain most of the noise
 - Eliminates spectral bands that don't contribute to classification because of noise or redundancy

- 1. Georeferencing
- 2. Habitat data processing
- 3. Hyperspectral pre-processing
- 4. Spectral library development
- 5. Image classification

- Georeferencing 1.
- Habitat data processing 2.
- Hyperspectral pre-processing 3.
- Spectral library development 4.
- Image classification 5.

Jun.phar — Sep.phar

June and September Spectral Response: caob

— JUN.caob — SEP.caob

JUN.caly — SEP.caly

- 1. Georeferencing
- 2. Habitat data processing
- 3. Hyperspectral pre-processing
- 4. Spectral library development
- 5. Image classification
- Used object-based image analysis (OBIA)
 - Evaluates spatial adjacency of pixels with a similar spectral signature to develop segmentation
 - Accounts for both spatial and spectral coherence
- Tested multiple classification methods
 - Determined Spectral Angle Mapper (SAM) provided the best results

Lessons Learned

Challenge	Resolution
Georeferencing imagery	Worked with vendor to develop m "strips
	Purchased integrated dGPS that i by vendor
Manual reflectance calibration	Purchased integrated upward lool sensor that is now offered by vend
	Add on-the-ground spectral radior
Resolution	May not need 2 cm accuracy. 8-10 result in improved flight time, redu
BIG DATA	Dedicated computing resources
Noisy data	OBIA helped, improved georectific

cation will help

0 cm would ucing variability

meter

king irradiance dor

is now offered

nethod to create

Lessons Learned

Challenge	Resolution
Spectral signature variability and duplicity	Use OBIA on RGB ortho imagery polygons and reduce noise
	Evaluate classes to determine if s combined
Automated classification	Employ additional analytical methodeep learning
	Evaluate and test available open-s products such as the 'hsdar' R pa SpectralPython (SPy v. 0.18)

to develop

some can be

nods including

source ckage and

Conclusion

- Challenges were faced in utilizing this new integrated technology
- Resolution of the challenges led to development of improved methods
- This study demonstrated the potential utility of hyperspectral-UAS for monitoring habitat restoration outcomes

Future

- Follow-on funding from NOAA UAS office for this year.
 - Collect new data to increase spectral library
 - Compare years to evaluate change at restoration sites
 - Incorporate LiDAR
 - Develop DEM
 - Compare to structure-from-motion (sfm) for accuracy and change detection
 - Biomass estimation

Funding provided by a grant from NOAA-UAS office and NOAA-NMFS

Thank you!

