



## The Biological Condition Gradient

Portland 4 April, 2012

### Biological Integrity: Operational Definition

"The ability of an aquatic ecosystem to support and maintain a balanced, integrated and adaptive community of organisms having a species composition, diversity and functional performance comparable to the natural habitats of a region."

As modified from Karr and Dudley (1981)

### **The Biological Condition Gradient**

- Conceptual model of aggregated biological knowledge to describe changes with increasing stress
- Based on combination of ecological theory and empirical knowledge
- Regional calibration
  - Conceptual model
  - Quantitative decision model

#### **Schematic of the Biological Condition Gradient**

#### Levels of Biological Condition

Natural structural, functional, and taxonomic integrity is preserved.

Structure & function similar to natural community with some additional taxa & biomass; ecosystem level functions are fully maintained.

Evident changes in structure due to loss of some rare native taxa; shifts in relative abundance; ecosystem level functions fully maintained.

Moderate changes in structure due to replacement of sensitive ubiquitous taxa by more tolerant taxa; ecosystem functions largely maintained.

Sensitive taxa markedly diminished; conspicuously unbalanced distribution of major taxonomic groups; ecosystem function shows reduced complexity & redundancy.

Extreme changes in structure and ecosystem function; wholesale changes in taxonomic composition; extreme alterations from normal densities.



Watershed, habitat, flow regime and water chemistry as naturally occurs. Chemistry, habitat, and/or flow regime severely altered from natural conditions.

# Basic idea

- What do we expect to see?
  - Species, abundances
  - Habitats
  - Biotopes
  - Interactions
- What do we <u>not</u> expect to see?
  - What is missing?
  - What is present that shouldn't be?

# **Biological Integrity**

### **QUANTITATIVE MEASURES**

The ability of an aquatic ecosystem to support and maintain a balanced, integrated and adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of

natural habitats within a region

REFEREN

**CLASSIFICATION** 

Undisturbed/Minimally Disturbed Stream

Stoneflies

Beetles

Midges

### Dragonflies, Damselflies

### Caddisflies

1 inch

**Courtesy of Susan Davies, ME DEP** 

**Mayflies** 



#### **Courtesy of Susan Davies, ME DEP**



**Courtesy of Susan Davies, ME DEP** 

#### **Biological Indicators: Behavior Along the Stressor Gradient**



Modified from Original Courtesy of Chris Yoder, CABB

# Attributes

- I. Historically documented, sensitive, long-lived, regionally endemic taxa
- **II.** Highly sensitive or specialist taxa
- **Sensitive and common taxa**
- **IV.** Taxa of intermediate tolerance
- v. Tolerant taxa
- vi. Non-native taxa
- vii. Organism condition
- **VIII. Ecosystem Function**
- **IX.** Spatial and temporal extent of detrimental effects
- **x. Ecosystem connectance**

# **BCG** Calibration

- Classification
- Identify stressor gradient
- Workshop:
  - Define expectations
  - Identify attributes and their metrics
  - Assign sites to levels of BCG
  - Develop rules for assigning sites (decision criteria)
- Develop model(s) for automated replication of panel decisions
  Test and iterate

# Classification

- Identify groups of sites that under natural conditions would have comparable biological communities
- Rely on those characteristics of sites that are intrinsic, or natural, and not the result of human activities

# Identify Stressor Gradient

- Gradient of least stressed to most stressed in context of ecoregion
- Identify example sites in classes of stress

### Identify attributes and metrics New England fish

#### Sensitive taxa

| N    | Common Name            |
|------|------------------------|
| 19   | American Brook lamprey |
| 5    | Banded Sunfish         |
| 3    | Bridled shiner         |
| 29   | Burbot                 |
| 15   | Creek chubsucker       |
| 2194 | Slimy sculpin          |
| 21   | Swamp darter           |
| 8221 | Brook trout, wild      |

### Attribute 2 taxa: most sensitive; the first to disappear



Slimy sculpin



**Burbot** 

Attribute 3 taxa: moderately sensitive



Wild brook trout

#### New England fish

#### Attribute 4 taxa: broadly tolerant of many conditions

| N     | Common Name           |
|-------|-----------------------|
| 521   | Chain pickerel        |
| 9046  | Common shiner         |
| 2552  | Cutlips minnow        |
| 10020 | Fallfish              |
| 118   | Fourspine stickleback |
| 15499 | Longnose dace         |
| 1764  | Pumpkinseed           |
| 4485  | Redbreast sunfish     |
| 612   | Redfin pickerel       |
| 1344  | Spottail shiner       |
| 8832  | Tesselated darter     |
| 2     | White perch           |



Longnose dace



**Redbreast sunfish** 







**Tesselated darter** 

#### New England fish

#### Attribute 5 taxa: Highly tolerant; increased abundance in stressed sites

| Ν     | Common Name      |
|-------|------------------|
| 259   | Banded killifish |
| 55137 | Blacknose dace   |
| 479   | Brown bullhead   |
| 4974  | Creek chub       |
| 595   | Golden shiner    |
| 23426 | White sucker     |
| 187   | Yellow bullhead  |



White sucker



Blacknose dace

#### New England fish

#### Attribute 6a taxa: Highly tolerant, nonnative

| Ν    | Common Name    |
|------|----------------|
|      | Bluntnose      |
| 11   | minnow         |
| 13   | Carp           |
|      | Central        |
| 32   | mudminnow      |
| 45   | Fathead minnow |
| 3    | Goldfish       |
| 364  | Green sunfish  |
|      | Largemouth     |
| 1648 | Bass           |



#### **Fathead minnow**



Largemouth bass

# Assign sites to BCG levels

- Panel members assign sites to BCG levels using species composition information
- Best sites (reference) are not necessarily Level 1!
- Capture critical information for decisions

### New England (Maine) best: Level 1



### Connecticut, New Jersey best: Level 2



### Wisconsin Driftless Area best: Level 2-3



# **Develop decision rules**

- During site assessment, record reasons why, e.g., "not enough sensitive taxa"
  - How many is enough for Level 4? Level 3?
  - How sensitive?
- Build up sets of decision rules for assigning sites to BCG levels
- Tend to use strength of evidence, using multiple attributes for decisions



# Lessons Learned

### Classification

- Catchment area
- Stream gradient (high, low)
- Wetlands influenced (= very low gradient?)
- Cold water / cool water / warm water
- Reference sites to identify expectations
- Applicability of assemblages
  - eg., fish n.a. in smallest headwaters
  - Assemblage response to stressors

# **Considerations for estuaries**

- Legacies of overexploitation
  - Cod
  - Salmon
  - Turtles
  - Lobster
  - Kelp
- Ocean changes
- Watershed changes
  - Hydrology
  - Nutrients
  - Sediment
- Direct habitat disruption
  - Habitat mosaic
- Secondary effects on other keystone components
  - Habitat mosaic
  - Trophic cascades

# Evidence for "best"

- Present-day conditions
- Historical reconstruction
  - Historical documents (descriptions, journals, charts, aerial images)
  - Fish/shellfish landings records
  - Museum collections
  - Archeological evidence (middens, other digs)
  - Paleo evidence (diatoms, forams, pollen)

# Advantages

- Based on ecological considerations, not a particular data set
- Universal attributes from species to biotopes
- Conceptually tied to least stressed, but <u>not</u> dependent on statistical comparison to specific reference
  - Requires projection/extrapolation to pristine conditions
  - Allows development of entire scale of system response
- Remarkable congruence of rules
  - Follows original description of BCG

