# EPIBENTHIC ORGANISMS OF THE COLUMBIA RIVER ESTUARY

Columbia River Estuary Data Development Program Final Report on the Epibenthic Organisms Work Unit of the Columbia River Estuary Data Development Program

### EPIBENTHIC ORGANISMS OF THE COLUMBIA RIVER ESTUARY

#### Contractor:

Fisheries Research Institute WH-10 College of Ocean and Fishery Sciences University of Washington Seattle, Washington 98195 (206)543-4650

Prepared by

Charles A. Simenstad, Co-Principal Investigator Fisheries Research Institute WH-10 College of Ocean and Fishery Sciences University of Washington Seattle, Washington 98195 (206)543-4650

June 1984

· , ·

Project Personnel

Principal Investigator

Roy E. Nakatani

Co-Principal Investigator

Charles A. Simenstad

Project Managers

Jeffery R. Cordell William Kinney

Research Biologists, Research Assistants, and Technicians

Julie B. Fuller Linda Matheson Douglas A. Milward George T. Williams

#### The Columbia River Estuary Data Development Program

This document is one of a set of publications and other materials produced by the Columbia River Estuary Data Development Program (CREDDP). CREDDP has two purposes: to increase understanding of the ecology of the Columbia River Estuary and to provide information useful in making land and water use decisions. The program was initiated by local governments and citizens who saw a need for a better information base for use in managing natural resources and in planning for development. In response to these concerns, the Governors of the states of Oregon and Washington requested in 1974 that the Pacific Northwest River Basins Commission (PNRBC) undertake an interdisciplinary ecological study of the estuary. At approximately the same time, local governments and port districts formed the Columbia River Estuary Study Taskforce (CREST) to develop a regional management plan for the estuary.

PNRBC produced a Plan of Study for a six-year, \$6.2 million program which was authorized by the U. S. Congress in October 1978. For the next three years PNRBC administered CREDDP and \$3.3 million was appro-However, PNRBC was abolished as of October priated for the program. 1981, leaving CREDDP in abeyance. At that point, much of the field work had been carried out, but most of the data were not yet analyzed and few of the planned publications had been completed. To avoid wasting the effort that had already been expended, in December 1981 Congress included \$1.5 million in the U. S. Water Resources Council (WRC) budget for the orderly completion of CREDDP. The WRC contracted with CREST to evaluate the status of the program and prepare a revised Plan of Study, which was submitted to the WRC in July 1982. In September, after a hiatus of almost one year, CREDDP work was resumed when a cooperative agreement was signed by CREST and the WRC to administer the program and oversee its completion by June 1984. With the dissolution of the WRC in October 1982, the National Oceanic and Atmospheric Administration (NOAA) assumed the role of the WRC as the federal representative in the cooperative agreement.

CREDDP was designed to meet the needs of those groups who were expected to be the principal users of the information being developed. One such group consists of local government officials, planning commissions, CREST, state and federal agencies, permit applicants, and others involved in planning and permitting activities. The other major anticipated user group includes research scientists and educational institutions. For planning purposes, an understanding of the ecology of the estuary is particularly important, and CREDDP has been designed with this in mind. Ecological research focuses on the linkages among different elements in the food web and the influence on the food web of such physical processes as currents, sediment transport, and salinity intrusion. Such an ecosystem view of the estuary is necessary to predict the effects of estuarine alterations on natural resources.

Research was divided into thirteen projects, called work units. Three work units, Emergent Plant Primary Production, Benthic Primary

v

Production, and Water Column Primary Production, dealt with the plant life which, through photosynthesis and uptake of chemical nutrients, forms the base of the estuarine food web. The goals of these work units were to describe and map the productivity and biomass patterns of the estuary's primary producers and to describe the relationship of physical factors to primary producers and their productivity levels.

The higher trophic levels in the estuarine food web were the focus of seven CREDDP work units: Zooplankton and Larval Fish, Benthic Infauna, Epibenthic Organisms, Fish, Avifauna, Wildlife, and Marine Mammals. The goals of these work units were to describe and map the abundance patterns of the invertebrate and vertebrate species and describe these species' relationships to relevant physical factors.

Three other work units, Sedimentation and Shoaling, Currents, and Simulation, dealt with physical processes. The work unit goals were to characterize and map bottom sediment distribution, to characterize sediment transport, to determine the causes of bathymetric change, and to determine and model circulation patterns, vertical mixing and salinity patterns.

Final reports on all of these thirteen work units have been published. In addition, these results are integrated in a comprehensive synthesis entitled The Dynamics of the Columbia River Estuarine Ecosystem, the purpose of which is to develop a description of the estuary at the ecosystem level of organization. In this document, the physical setting and processes of the estuary are described first. Next, a conceptual model of biological processes is presented, with particular attention to the connections among the components represented by the work unit categories. This model provides the basis for a discussion of relationships among physical and biological processes and the functional groups of organisms in the estuary. Finally, the estuary is divided into regions according to physical criteria, and selected biological and physical characteristics of habitat types within each region are described. Historical changes in physical processes are also discussed, as are the ecological consequences of such changes.

Much of the raw data developed by the work unit researchers is collected in a magnetic tape archive established by CREDDP at the U.S. Army Corps of Engineers North Pacific Division Data Processing Center in Portland, Oregon. These data files, which are structured for convenient user access, are described in an Index to CREDDP Data. The index also describes and locates several data sets which were not adaptable to computer storage.

The work unit reports, the synthesis, and the data archive are intended primarily for scientists and for resource managers with a scientific background. However, to fulfill its purposes, CREDDP has developed a set of related materials designed to be useful to a wide range of people.

<u>Guide to the Use of CREDDP Information</u> highlights the principal findings of the program and demonstrates how this information can be used to assess the consequences of alterations in the estuary. It is

vi

intended for citizens, local government officials, and those planners and other professionals whose training is in fields other than the estuary-related sciences. Its purpose is to help nonspecialists use CREDDP information in planning and permitting processes.

A detailed portrait of the estuary, but one still oriented toward a general readership, is presented in The Columbia River Estuary: Atlas of Physical and Biological Characteristics, about half of which consists of text and illustrations. The other half contains color maps of the estuary interpreting the results of the work units and the ecological synthesis. A separate Bathymetric Atlas of the Columbia River Estuary contains color bathymetric contour maps illustrating the changes between surveys. CREDDP has also produced unbound maps of the estuary designed to be useful to resource managers, planners and citizens. These blackand-white maps illustrate the most recent (1982) bathymetric data as contours and show intertidal vegetation types as well as important They are available in two segments at a scale of cultural features. 1:50,000 and in nine segments at 1:12,000.

Two historical analyses have been produced. <u>Changes in Columbia</u> <u>River Estuary Habitat Types over the Past Century</u> compares information on the extent and distribution of swamps, marshes, flats, and various water depth regimes a hundred years ago with corresponding recent information and discusses the causes and significance of the changes measured. <u>Columbia's Gateway</u> is a two-volume set of which the first volume is a cultural history of the estuary to 1920 in narrative form with accompanying photographs. The second volume is an unbound, boxed set of maps including 39 reproductions of maps originally published between 1792 and 1915 and six original maps illustrating aspects of the estuary's cultural history.

A two-volume Literature Survey of the Columbia River Estuary (1980) is also available. Organized according to the same categories as the work units, Volume I provides a summary overview of the literature available before CREDDP while Volume II is a complete annotated bibliography.

All of these materials are described more completely in <u>Abstracts</u> of <u>Major CREDDP Publications</u>. This document serves as a quick reference for determining whether and where any particular kind of information can be located among the program's publications and archives. In addition to the abstracts, it includes an annotated bibliography of all annual and interim CREDDP reports, certain CREST documents and maps, and other related materials.

To order any of the above publications or to obtain further information about CREDDP, its publications or its archives, write to CREST, P.O. Box 175, Astoria, Oregon 97103, or call (503) 325-0435.

#### FOREWORD

Fisheries Research Institute, of the University of Washington's College of Ocean and Fishery Sciences, was responsible for the Epibenthic Organisms Work Unit research under the original CREDDP<sup>\*</sup> contract to the prime contractor, Dames and Moore of Seattle, Washington. Pursuant with the continuation of CREDDP in 1982, in November FRI was directly contracted to complete the Epibenthic Organisms Work Unit research and provide summary and interpretation of those results.

Acknowledgements are due many individuals who were involved in or assisted FRI's CREDDP research on epibenthic organisms in the Columbia River Estuary. Among the present project personnel, particular credit is certainly due Jeff Cordell for his persistent efforts in elucidating the complex taxonomy of the estuary's harpacticoid fauna. The author also thanks William Kinney and George Williams, Project Leader and Research Assistant, respectively, for their efforts on the initial Dames and Moore, and especially Jonathan Houghton, research project. are due considerable acknowledgement for their support during the earlier two years of the project. Jeff Cordell and a number of other external reviewers contributed to the final quality of this document. The Productivity of Estuaries Select Program of the College of Ocean and Fisheries Sciences, University of Washington, provided support for the completion of this report.

Whatever contributions this research has made to the growth of estuarine science and management are dedicated to Linda Matheson (deceased).

\*See Appendix A for list of institutional acronyms.

## TABLE OF CONTENTS

|

1

Ì

Ì

Ì

:

.

|                                                                                                                                                                                                                                                                    | Page                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| LIST OF FIGURES                                                                                                                                                                                                                                                    | xiii                 |
| LIST OF TABLES                                                                                                                                                                                                                                                     | xv                   |
| EXECUTIVE SUMMARY                                                                                                                                                                                                                                                  | ES-1                 |
| 1. INTRODUCTION                                                                                                                                                                                                                                                    | 1                    |
| 2. METHODS                                                                                                                                                                                                                                                         | 7                    |
| 2.1 SAMPLING DESIGN                                                                                                                                                                                                                                                | 7                    |
| 2.1.1 Site Location                                                                                                                                                                                                                                                | 7                    |
| 2.1.2 Sampling Frequency                                                                                                                                                                                                                                           | 7                    |
| 2.1.3 Sampling Methods                                                                                                                                                                                                                                             | 10                   |
| 2.2 PHYSICAL MEASUREMENTS                                                                                                                                                                                                                                          | 13                   |
| 2.3 FIELD SAMPLE PROCESSING                                                                                                                                                                                                                                        | 13                   |
| 2.4 LABORATORY SAMPLE PROCESSING                                                                                                                                                                                                                                   | 14                   |
| 2.5 DATA ANALYSIS                                                                                                                                                                                                                                                  | 15                   |
| <ul> <li>2.5.1 Coding</li> <li>2.5.2 Transfer</li> <li>2.5.3 Tabulation and Statistical Summary</li> <li>2.5.4 Correlative Physical and Biological Data</li> <li>2.5.5 Relationships between Epibenthic Organism<br/>Standing Crop and Other Biotic and</li> </ul> | 15<br>15<br>15<br>16 |
| Abiotic Variables                                                                                                                                                                                                                                                  | 16                   |
| 2.5.6 Numerical Classification                                                                                                                                                                                                                                     | 16                   |
| 2.6 QUALITY ASSURANCE PROCEDURES                                                                                                                                                                                                                                   | 16                   |
| 2.7 DATA ADEQUACY                                                                                                                                                                                                                                                  | 17                   |
| 3. RESULTS                                                                                                                                                                                                                                                         | 19                   |
| 3.1 TAXONOMIC COMPOSITION                                                                                                                                                                                                                                          | 19                   |
| 3.1.1 Epibenthic Zooplankton                                                                                                                                                                                                                                       | 19.                  |
| 3.1.2 Motile Macroinvertebrates                                                                                                                                                                                                                                    | 19                   |
| 3.2 DENSITY                                                                                                                                                                                                                                                        | 23                   |
| 3.2.1 Epibenthic Zooplankton                                                                                                                                                                                                                                       | 23                   |
| 3.2.2 Motile Macroinvertebrates                                                                                                                                                                                                                                    | 28                   |
| 3.3 STANDING CROP                                                                                                                                                                                                                                                  | 33                   |
| 3.3.1 Epibenthic Zooplankton                                                                                                                                                                                                                                       | 33                   |
| 3.3.2 Motile Macroinvertebrates                                                                                                                                                                                                                                    | 33                   |
| 3.4 RELATIONSHIPS BETWEEN EPIBENTHIC ORGANISM<br>STANDING CROP AND OTHER BIOTIC AND ABIOTIC<br>VARIABLES                                                                                                                                                           | 33                   |

.

|                                            |                                                                       | Page     |
|--------------------------------------------|-----------------------------------------------------------------------|----------|
| 3.5 EPIBENTHIC ZOOD<br>3.6 FOOD WEB LINKAG | PLANKTON ASSEMBLAGE STRUCTURE<br>GES                                  | 33<br>39 |
| 3.6.1 Epibenti<br>3.6.2 Motile N           | nic Zooplankton<br>Macroinvertebrates                                 | 39<br>39 |
| 3.7 Crangon AND Nee                        | omysis POPULATION DYNAMICS                                            | 40       |
| 4. DISCUSSION                              |                                                                       | 43       |
| 4.1 PHYSICAL AND EC<br>AND STANDING S      | COLOGICAL INFLUENCES UPON STRUCTURE<br>FOCK OF EPIBENTHIC ZOOPLANKTON |          |
| ASSEMBLAGES<br>4.2 PHYSICAL AND E          | COLOGICAL INFLUENCES UPON DISTRIBUTION                                | 43       |
| AND STANDING ST                            | FOCK OF MOTILE MACROINVERTEBRATES                                     | 43       |
| 4.3 FOOD WEB RELAT                         | LONSHIPS                                                              | 45       |
| 4.4 ESTUARINE PRODU                        | JCTION OF EPIBENTHIC ZOOPLANKTON AND                                  |          |
| MOTILE MACROIN                             | /ERTEBRATES                                                           | 45       |
| 5. CONCLUSIONS AND REC                     | MMENDATIONS                                                           | 49       |
| LITERATURE CITED                           |                                                                       | 51       |
| APPENDIX A. List of act                    | ronyms                                                                | A-1      |
| APPENDIX B. Summary of                     | CREDDP epibenthic zooplankton                                         |          |
| collections by 0.10                        | )-m <sup>2</sup> epibenthic suction pump                              |          |
| and 0.50-m epibent                         | nic sled in the Columbia River                                        |          |
| ADDENDIX C Monthly al                      | ) - July 1981.                                                        | B-1      |
| zooplankton sampli                         | as stations and taxa in the                                           |          |
| Columbia River Estu                        | Jary, March 1980 - July 1981.                                         | C-1      |

ł

Π

[]

Π

]

 $\prod$ 

 $\Box$ 

 $\bigcup$ 

 $\left[ \right]$ 

 $\left[ \right]$ 

 $\left[ \right]$ 

## LIST OF FIGURES

1

.

.

-

|     |                                                                                                                                                                                             | Page |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.  | Diagram (cross section) of benthic boundary layer<br>environment inhabited by epibenthic zooplankton and<br>motile macroinvertebrates.                                                      | 2    |
| 2.  | Map of the Columbia River Estuary illustrating prominent habitat and cultural features.                                                                                                     | 5    |
| 3.  | Map of the Columbia River Estuary illustrating location<br>of epibenthic zooplankton and motile macroinvertebrates<br>sampling sites.                                                       | 9    |
| 4.  | Epibenthic suction pump system utilized to quantitatively<br>sample epibenthic zooplankton in tidal flat and demersal<br>slope habitats of the Columbia River Estuary.                      | 11   |
| 5.  | Epibenthic sled utilized to quantitatively sample epi-<br>benthic zooplankton in channel bottom habitats of the<br>Columbia River Estuary.                                                  | 12   |
| 6.  | Accumulative numerical composition (%) of epibenthic<br>zooplankton in the Columbia River Estuary, March -<br>August 1980.                                                                  | 21   |
| 7.  | Accumulative gravimetric composition (%) of epibenthic<br>zooplankton in the Columbia River Estuary, March –<br>August 1980.                                                                | 22   |
| 8.  | Spatial distribution of epibenthic zooplankton density<br>in tidal flat habitats during three hydrologic seasons<br>in the Columbia River Estuary, March 1980 - July 1981.                  | 24   |
| 9.  | Spatial distribution of epibenthic zooplankton density<br>in demersal slope habitats during during three hydro-<br>logic seasons in the Columbia River Estuary, March<br>1980 - July 1981.  | 25   |
| 10. | Spatial distribution of epibenthic zooplankton density<br>in channel bottom habitats during three hydrologic<br>seasons in the Columbia River Estuary, March 1980 -<br>July 1981.           | 26   |
| 11. | Temporal distribution of epibenthic zooplankton density<br>in six tidal flat, demersal slope, and five channel<br>bottom habitats in the Columbia River Estuary, March<br>1980 - July 1981. | 27   |
| 12. | Spatial distribution of motile macroinvertebrate<br>density in tidal flat habitats during three hydrologic<br>seasons in the Columbia River Estuary, March 1980 -<br>July 1981.             | 29   |

|     |                                                                                                                                                                                                                                                                                        | 0  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 13. | Spatial distribution of motile macroinvertebrate density<br>in demersal slope habitats during three hydrologic<br>seasons in the Columbia River Estuary, March 1980 -<br>July 1981.                                                                                                    | 30 |
| 14. | Spatial distribution of motile macroinvertebrate density<br>in channel bottom habitats during three hydrologic<br>seasons in the Columbia River Estuary, March 1980 -<br>July 1981.                                                                                                    | 31 |
| 15. | Spatial distribution of Dungeness crab ( <u>Cancer</u><br><u>magister</u> ) density during three hydrologic seasons and<br>among three habitats in the Columbia River Estuary,<br>March 1980 - July 1981.                                                                              | 32 |
| 16. | Distribution of epibenthic zooplankton assemblage<br>clusters in the Columbia River Estuary during three<br>hydrologic seasons: (A) spring freshet season (May<br>1980); (B) summer-fall low flow season (October<br>1980); and (C) winter fluctuating flow season<br>(February 1981). | 36 |
| 17. | Length (carapace) frequency distribution of sand shrimp<br>( <u>Crangon francsicorum</u> ) in Youngs Bay, Columbia River<br>Estuary, March - August 1980.                                                                                                                              | 41 |
| 18. | Qualitative food web relationships involving epibenthic<br>zooplankton and motile macroinvertebrates in the<br>Columbia River Estuary.                                                                                                                                                 | 46 |

Page

[]

 $\left[ \right]$ 

 $\left[ \right]$ 

 $\left[ \right]$ 

 $\left[ \right]$ 

xiv

## LIST OF TABLES

· · ·

i

|    |                                                                                                                                                                                               | Page |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1. | List and characteristics of epibenthic organism<br>sampling sites in Columbia River Estuary, March 1980 -<br>July 1981.                                                                       | 8    |
| 2. | Estimated surface areas of intertidal and subtidal habitats in three estuarine zones of the Columbia River Estuary.                                                                           | 10   |
| 3. | Numerical composition of prominent zooplankton taxa<br>among epifauna in the Columbia River Estuary, March<br>1980 - July 1981.                                                               | 20   |
| 4. | Partial correlation coefficient matrix of epibenthic<br>organism standing stock variables and other biotic and<br>abiotic variables in the Columbia River Estuary, March<br>1980 - July 1981. | 34   |
| 5. | Numerical composition of food organisms consumed by<br><u>Neomysis mercedis</u> and <u>Crangon franciscorum</u> in the<br>Columbia River Estuary, March 1980 - July 1981.                     | 42   |

xv

.

.

,

#### EXECUTIVE SUMMARY

Epibenthic animals in the Columbia River Estuary tend to fall into two categories according to their usual position within the benthic boundary layer, that region located at the interface between the water column and the bottom sediment. These include: (a) large (>1 cm), highly motile macroinvertebrates such as shrimps and crabs; and, (b) small macro- (1 cm to 0.500 mm), meio- (0.500 mm to 0.060 mm), microfauna (<0.060 mm) such as harpacticoid copepods, gammarid amphipods, and cumaceans, which are termed epibenthic zooplankton because of their movement in and out of the water column.

These epibenthic organisms are found in all of the estuary's habitats which are tidally inundated but tend to be concentrated in the lower tidal elevation (i.e. >0.0 m above MLLW) of the tidal flats and along the demersal slope habitats between 0.0 m and -1.0 m elevations. The low frequency of tidal inundation in estuarine marsh and swamp habitats and the excessive bottom current velocities in the deeper, channel bottom habitats probably limit the development and maintenance of epibenthic zooplankton in these habitats, but motile macroinverte-brates are often common there.

Smaller, more planktonic forms were sampled from within the benthic boundary layer of shallow (i.e. <1 m depth) habitats using a 0.10  $m^2$ epibenthic suction pump and in channel bottom habitats using a 0.5-m opening-closing epibenthic sled. The suction pump was a fixed sampler which filtered 0.025  $m^3$  of the water column over 0.1  $m^2$  of the bottom substrate with little or no contamination from outside this sampling The epibenthic sled filtered epifauna from within the benthic volume. boundary layer as it was towed over the bottom by a surface vessel. The more evasive macrofauna had to be sampled with nets--a 37-m beach seine for demersal slope habitats and a 4.9-m bottom trawl for tidal flat and channel bottom habitats. Sampling procedures were standardized and measurements taken which enabled estimation of the effort expended (i.e. area or volume sampled) for each sample, thus allowing estimation and comparison of epifaunal density (no. individuals  $m^{-2}$  or  $m^{-3}$ ) and standing crop (g wet weight  $m^{-2}$  or  $m^{-3}$ ) in the different habitats.

Harpacticoid (including principally <u>Scottolana canadensis</u>, <u>Micro-arthridion littorale</u>, and <u>Tachidius spp.</u>), calanoid (<u>Eurytemora affinis</u>), and cyclopoid copepods (<u>Cyclops spp.</u>), ostracods (<u>Limnocythere sp.</u>), cladocerans (<u>Daphnia spp.</u>) and rotifers were the prominent components of the epibenthic zooplankton assemblages. The sand shrimp, <u>Crangon franciscorum</u>, and Dungeness crab, <u>Cancer magister</u>, constituted the principal motile macroinvertebrates. <u>Mysids or "opossum shrimp,"</u> <u>Neomysis mercedis</u>, were common to both groups and, as such, may have been under-represented in the collections due to their evasion of the epibenthic pump and sled and the relatively large mesh sizes of the beach seine and bottom trawl.

The epifauna sampled within the estuary included components which were both indigenous to the system (i.e. their populations reproductive wholely within the estuary) and exogenous animals which were passively transported into the estuary from the Columbia River or the open ocean. Among the zooplankters, most of the cladocerans, cyclopoid copepods, and rotifers were freshwater taxa which probably did not constitute viable populations by the time they entered the estuarine mixing zone of the estuary. Dungeness crabs also originated outside the estuary, including principally juveniles which settled out of the water column after metamorphosis from megalopae or migrated in as early instar stages via the benthic (bedload) transport at the mouth of the estuary. Thus, the principal indigenous epifauna were harpacticoid copepods, <u>Eurytemora</u>, mysids, and crangonid shrimp.

As is being illustrated in other Pacific Northwest estuaries, epibenthic zooplankton play important roles in the food web by their conversion and transfer of detrital organic matter to higher trophic levels. Most of the epibenthic zooplankters, in fact, are capable of consuming phytoplankton as well as detritus particles. This flexible feeding mode allows them to exploit the variable composition of food particles which are entrained within the benthic boundary layer at different times (tidal cycles, seasons) and regions of the estuary. The motile macroinvertebrates illustrate similarly dynamic feeding behavior as true omnivores which can exploit phytoplankton and detritus as well as prey upon infaunal and epibenthic animals. The importance of epifauna to the overall flow of trophic energy in the estuary is indicated by the strength of food web linkages to prominent secondary (fishes) and tertiary (marine mammals) consumers.

Seasonal patterns of epifauna distribution, density, and standing crop indicate higher standing stock in tidal flat and demersal slope habitats in the estuarine mixing zone of the estuary. In the case of the epibenthic zooplankton, this involves considerable seasonal shift in peak density from the region 10 km to 20 km from the mouth of the estuary during the spring freshet season (e.g. ~160,000 m<sup>-2</sup>) to the region 25 km to 35 km from the mouth during the summer-fall low flow season (e.g. ~90,000 m<sup>-2</sup>). Motile macroinvertebrates maintain density maxima (e.g. ~0.6 to ~0.9 m<sup>-2</sup>) in the same lower (closer to the mouth of the estuary) region during both spring freshet and summer-fall low flow seasons but also show another, slightly lower density maximum (e.g. ~0.4 m<sup>-2</sup>) in the upper regions of the estuarine mixing zone during the summer-fall low flow season.

Composition of epifaunal assemblages was also dynamic seasonally. During the monthly sampling between March and August 1980, the numerically prominent epibenthic zooplankton taxa generally shifted from ectinosomatid harpacticoids to Eurytemora affinis between the winter fluctuating flow season and the spring freshet season. Eurytemora, undifferentiated copepod larvae, and Scottolana canadensis were prominent through During the summer-fall low flow season, the spring freshet season. the epibenthic however. laophontid harpacticoids dominated DumD collections in shallow habitats but fluvial taxa (e.g., Cyclops spp., Daphnia spp.) were more prominent in the channel bottom habitats sampled with the epibenthic sled. Seasonal composition based upon biomass (gravimetric) was similar in shallow habitats but diverged in the channel bottom habitats, where the larger amphipods (Corophium salmonis) and mysids (Neomysis neomysis) were more prominent during the winter fluctuating flow season and Neomysis and juvenile crangonid shrimp

(Crangon franciscorum) dominated the gravimetric composition between the spring freshet and summer-fall low flow seasons.

These seasonal changes are correlated with circulation processes which are spatially variable as a function of seasonal patterns of river discharge and neap-spring tidal cycles, including location of the maximum turbidity zone and extent of salinity intrusion. Hierarchical cluster analysis of the epibenthic zooplankton density data indicated that the reduction in water column stratification, increased mixing, and expansion of the estuarine mixing zone during the summer-fall low flow season produced a more complex structure of epibenthic zooplankton Both the spring freshet and winter fluctuating flow assemblages. seasons illustrated six or seven taxa clusters which tended to fall into two basic site clusters, one confined to the tidal-fluvial zone and another in the lower reaches of the estuarine mixing zone. Six taxa clusters were also evident during the summer-fall low flow season but the sites were very loosely associated into at least five cluster The distinguishing characteristic of these clusters is that groups. they tended to contain both exogenous riverine as well as endogenous estuarine zooplankters and two taxa clusters contained plume and ocean zone taxa. This implies considerable homogeneity in the distribution of riverine zooplankters through the estuary during the low discharge season as compared to either of the high discharge seasons.

The distribution and standing stock of motile macroinvertebrates reflects the general dominance of Crangon franciscorum throughout the The occurrence of juvenile Dungeness crab, estuarine mixing zone. Cancer magister, produced slightly higher standing crop values in the plume and ocean zone and in the seaward reaches of the estuarine mixing zone but were comparatively unimportant in relation to the overall macroinvertebrate assemblage throughout the estuary. Crangon populations appeared to overwinter on tidal flat habitats in the estuarine mixing zone such as Youngs Bay. Reproduction occurred in the spring and adult shrimp had disappeared from these habitats by early summer. Coincident with the start of the summer-fall low flow season, young-of-the-year Crangon began moving up the estuary with the increased salinity intrusion and landward movement of the turbidity maximum zone and the maximum epibenthic standing stock. Although salinity tolerance cannot be excluded as an explanation for intraestuarine migration, it also suggests a response on the part of the shrimp population to exploit the optimum concentrations of suspended phytoplankton (diatom) cells and epibenthic zooplankton within the benthic boundary layer of the expanding estuarine This dramatic shift in epibenthic assemblages is also mixing zone. reflected in the distribution of their predators. One of the highest correlations among both physical and biological factors related to motile macroinvertebrate standing crop was the density of co-occurring fishes. Distribution of harbor seals, also major predators upon Crangon, also illustrated overlapping seasonal movement.

Although autotrophic processes, detritus availability, and other trophic factors such as predation probably are the factors limiting the production of epibenthic organisms in the Columbia River Estuary, it is obvious that seasonally dynamic circulation processes structure the composition and distribution of both epibenthic zooplankton and motile macroinvertebrates and may indirectly influence the distribution and standing stock of their predators.

 $\prod$ 

 $\left[ \right]$ 

|

## 1. INTRODUCTION

Descriptions of the unique animal assemblages associated with the interface between the water column and bottom substrate are a relatively recent aspect of research on estuarine or nearshore marine communities, particularly in the case of meio- (0.060 mm to 0.500 mm) and microfauna (< 0.060 mm) (Beyer 1958; Bossanyi 1957; Hesthagen 1973; Boysen 1975). Explanations of the physical or biological factors structuring affecting the taxonomic composition and diversity) or maintaining these assemblages are rare (Sibert 1981). Termed "hyperbenthos" (Bever 1958: Hesthagen 1973) or "epibenthos", these assemblages are predominantly composed of crustaceans, although larvae and other early life history stages of echinoderms, molluscs, and other marine taxa can also be Unlike infauna, which have the relative protection allowed prevalent. by their position within the sediment, epifauna are relatively motile within the upper 1 cm or on top of the sediment surface and must be adapted to the rigors of life amid high current velocities, high concentrations of suspended sediments, low water visibility, shifting sediment structure, and concentrations of predators such as demersal Some of the smaller animals are passively concentrated within fishes. the benthic boundary layer which stretches within 1 mm (laminar layer) to several meters (turbulent layer) of the bottom and many of the larger epifauna may actively migrate even higher into the water column (Figure 1).

Consequently, epibenthic animals can be classified into two basic categories according to their usual position within this region, (a) the large (>1 cm), motile macroinvertebrates such as shrimps and crabs and, (b) small macro- (0.500 mm to 1 cm), meio-, and microfauna such as mysids, gammarid amphipods, cumaceans, and harpacticoid copepods, which we term "epibenthic zooplankton" because of their movement in and out of the water column.

As most epibenthic crustaceans are detritivores, their prominence as prey resources of secondary consumers in estuarine and nearshore marine communities of the Pacific Northwest suggest that they play a critical role in food web dynamics (Simenstad et al. 1979). Despite such potential importance, quantitative, ecological research on epibenthic crustaceans has typically been limited to habitat- and taxaspecific studies of their availability as prey for juvenile salmonids (Feller and Kaczynski 1975; Brown and Sibert 1977; Levings and Chang 1977; Sibert 1979; Levings 1980a & b; Cordell and Simenstad 1981a & b; Simenstad and Salo 1982).

Although many of the over  $1.5 \times 10^8$  juvenile salmonids passing annually through the Columbia River Estuary are known to utilize epifaunal animals (Sims 1975; Durkin et al. 1979), documentation of epifauna in that estuary has been predominantly descriptive (Higley and Holtan 1975; Durkin et al. 1976; Durkin and Lipovsky 1977; Good 1977) or restricted to macroinvertebrates (Haertel and Osterberg 1967).

The Columbia River is the largest river on the Pacific Coast of North America, having a total drainage area of  $670,810 \text{ km}^2$  inclusive of the watersheds of 11 major tributaries. River discharge, which was





Ν

historically fluctuated seasonally between ~1,800  $m^{3}s^{-1}$  and 34,000  $m^{3}s^{-1}$ , now ranges between ~4,200  $m^{3}s^{-1}$  and 17,000  $m^{3}s^{-1}$  due to the water regulation effects of 13 major hydroelectric power and irrigation dam projects on the Columbia mainstem and more than 100 dams on its tributaries which were constructed between 1933 and 1972 (Hickson and Rodolf 1951; Neal 1972). The Columbia River Estuary (Fig. 2) is equally impressive, encompassing ~483 km<sup>2</sup>, which has also been modified significantly by the construction of three jetties between 1885 and 1939 and largescale, annual dredging of navigational channels since 1945 (Lockett 1963, 1967). Alteration of hydrologic and sedimentation processes by these and other (dyking and filling) anthropogenic changes probably accounts for much of the ~168 km<sup>2</sup> loss of habitat (tidal marshes and swamps and waters >2 m deep) and ~17 km<sup>2</sup> gain (tidal flats and shallows) since 1868 (Thomas 1983).

Based on these earlier studies, the potentially important role of epifauna in the Columbia River estuarine ecosystem was recognized as an important component of any comprehensive research on the estuary and was incorporated as such in the original plan of study for the Columbia River Estuary Data Development Program (CREDDP; Pacific Northwest River Basins Commission 1979). The origin, history, and objectives of CREDDP were described in the Preface to this report. The Epibenthic Organisms Work Unit was one of the original thirteen work units in CREDDP which addressed biological community structure and dynamics in the estuary. Results of the earlier Epibenthic Organisms Work Unit and those of associated work units were described in the 1979-1980 CREDDP Annual Report (Pacific Northwest River Basins Commission 1980a) and a Master of Science thesis (Williams 1983).

Final summary and interpretation of the results of this work unit's research involved the following objectives:

- Describe and map key and selected other epibenthic species or assemblages in terms of density, standing crop and production over time;
- (2) Quantify relationships among epibenthic organisms and physical/ chemical (salinity, sediments, depth) and biological (predators, competitors) factors;
- (3) Describe the population structure, dynamics, life history, and trophic relationships of Dungeness crab, crangonid shrimp, and mysids; and,
- (4) Define functional relationships of epibenthic organisms in the ecosystem, including predator-prey linkages, emigration and immigration, and role in the estuarine carbon budget.

The first three objectives involved completion of sample and data processing from the original CREDDP Epibenthic Organisms Work Unit studies and analyses of the total 18-month dataset; no new samples were to be collected. The fourth and secondary objective was principally to provide interpretive information on the dynamics and role of epibenthic organisms within the Columbia River estuarine ecosystem to a team of

scientists which integrated the overall CREDDP results for preparation of Dynamics of the Columbia River Estuarine Ecosystem (see Preface).

The following material describes the results of the research conducted to meet these objectives. A summary of these results also appears in Simenstad and Cordell (in press) and further interpretations of the role of epifauna is included in <u>Dynamics of the Columbia River</u> Estuarine Ecosystem (see Preface).



| Columbia | River | Estuary |
|----------|-------|---------|
|----------|-------|---------|

## Scale 1:160,000



Map produced in 1983 by Northwest Cartography, Inc. for the Columbia River Estuary Data Development Program Shoreline (limit of non-aquatic vegetation)
Intertidal vegetation
Shoals and flats





•---- Other cultural features

.

.

Figure 2. Columbia River Estuary 🕠



#### 2. METHODS

#### 2.1 SAMPLING DESIGN

The following describes the general scheme and methodology utilized to sample epibenthic zooplankton and motile macroinvertebrates in the Columbia River Estuary. More detailed descriptions of sampling procedures are also found in the CREDDP Procedures Manual (Pacific Northwest River Basins Commission 1980b).

#### 2.1.1 Site Location

Epifauna were systematically sampled at 16 sites within the estuary according to a sampling design stratified by habitat and estuarine zone (Figure 3; Table 1). Habitats were defined as: (1) tidal flats of elevation >0.0 m (relative to MLLW); (2) demersal slopes between 0.0 m and -1.0 m; and, (3) channel bottoms between -1.0 m and -15.0 m. In addition, there was some within-habitat differentiation. For example, tidal flats in the estuarine mixing zone were separated into two sites, a fine sand-silt site at Youngs Bay (YBF) and a coarse sand site on Desdemona Sands near the Astoria-Megler highway bridge (BF).

Based on previous description of salinity distribution in the estuary (Haertel and Osterberg 1967), estuarine zones were originally categorized as: (1) marine or polyhaline, (2) estuarine mixing or mesohaline; (3) upper estuarine or oligohaline; and, (4) riverine; these were assumed to correspond to salinity ranges of (1) 30 °/oo to 18 °/oo, (2) 18 °/oo to 5 °/oo, (3) 5 °/oo to 0.5 °/oo, and (4) <0.5 °/oo, respectively. Subsequent definition of salinity distribution (Jay 1982) and the integration of the CREDDP data (Simenstad et al. 1984) indicates that only three zones (plume and ocean, estuarine mixing, tidal-fluvial) are justified (Figure 3). This report will discuss epibenthic organism distribution and standing stock in terms of the latter zonation scheme.

As determined from digitization and planimetry of CREDDP base maps, estimations of the total surface areas of each habitat indicate that the dominant habitat is the subtidal area >1 m deep, which constitutes 74% of the total intertidal-subtidal habitat (Table 2); the single most prominent habitat is the subtidal area >1 m deep in the estuarine mixing zone (38% of total).

#### 2.1.2 Sampling Frequency

Except for the Cathlamet Bay channel bottom site, which was included in 1981 to better sample suspected crayfish habitat, all sites were designed to be sampled monthly between March and August 1980 and quarterly between September 1980 and February 1981. Between March 1981 and September 1981 a reduced suite (10) of the original sites and the additional Cathlamet Bay site were sampled quarterly. Later analysis of river discharge, salinity intrusion, tidal cycles, and other aspects of the estuary's circulation (Simenstad et al. 1984) permitted definition of three "hydrologic seasons": (1) winter fluctuating flow (November-April); (2) spring freshet (May-July); and, (3) summer-fall low flow (July-October).

| Site & Habitat<br>Name | Site<br>Abbreviation | Distance<br>from mouth<br>of estuary<br>(km) | Latitude<br>(deg.min.sec.N) | Longitude<br>(deg.min.sec.W) | Site<br>Number | Study Period |
|------------------------|----------------------|----------------------------------------------|-----------------------------|------------------------------|----------------|--------------|
| Baker Bay Flat         | BBF                  | 6.4                                          | 46° 18' 30"                 | 124° 02' 30"                 | 14001          | 3/80 - 7/81  |
| Ilwaco Channel         | IC                   | 3.8                                          | 46° 16' 48"                 | 124° 02' 18"                 | 14002          | 3/80 - 7/81  |
| Sand Island Slope      | SIS                  | 6.5                                          | 46° 16' 06"                 | 124° 00' 24"                 | 14003          | 3/80 - 7/81  |
| Youngs Bay Flat        | YBF                  | 15.7                                         | 46° 10' 18"                 | 123° 53' 48"                 | 14004          | 3/80 - 7/81  |
| Bridge Channel         | BC                   | 19.0                                         | 46° 11' 42"                 | 123° 51' 30"                 | 14005          | 4/80 - 2/81  |
| Bridge Slope           | BS                   | 18.0                                         | 46° 13' 00"                 | 123° 52' 00"                 | 14006          | 3/80 - 1/81  |
| Bridge Flat            | BF                   | 18.3                                         | 46° 12' 30"                 | 123° 52' 00"                 | 14007          | 3/80 - 7/81  |
| Cathlamet Bay Chann    | el CBC               | 37.5                                         | 46° 11' 20"                 | 123° 38' 23"                 | 14017          | 4/81 - 7/81  |
| Rice Island Channel    | RIC                  | 31.7                                         | 46° 14' 24"                 | 123° 42' 36"                 | 14008          | 4/80 - 7/81  |
| Rice Island Slope      | RIS                  | 30.8                                         | 46° 14' 54"                 | 123° 43' 06"                 | 14014          | 4/80 - 7/81  |
| Grays Bay Flat         | GBF                  | 33.8                                         | 46° 17' 30"                 | 123° 41' 00"                 | 14010          | 3/80 - 7/81  |
| Elliott Point Channe   | el EPC               | 39.8                                         | 46° 15' 18"                 | 123° 36' 30"                 | 14016          | 4/80 - 2/81  |
| Jim Crow Sands Slope   | e JCS                | 41.2                                         | 46° 15' 12"                 | 123° 35' 30"                 | 14011          | 3/80 - 1/81  |
| Jim Crow Sands Flat    | JCF                  | 43.7                                         | 46° 14' 54"                 | 123° 35' 30"                 | 14012          | 3/80 - 1/81  |
| Quinn's Island Flat    | QIF                  | 50.1                                         | 46° 14' 24"                 | 123° 29' 24"                 | 14013          | 3/80 - 7/81  |
| Bradwood Slope         | BDS                  | 54.7                                         | 46° 12' 06"                 | 123° 26' 24"                 | 14015          | 3/80 - 1/81  |

Table 1. List and characteristics of epibenthic organism sampling sites in Columbia River Estuary, March 1980 - July 1981.



Figure 3. Map of the Columbia River Estuary illustrating location of epibenthic zooplankton and motile macroinvertebrate sampling sites. Dashed lines separate three estuarine zones, with stippled area indicating the transitional region between the estuarine mixing zone and tidal-fluvial zone which shifts seasonally with salinity intrusion.

| the Columbia River estuary; data obtained from<br>digitization or planimetry of CREDDP base maps. |                                   |           |               |          |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------|-----------|---------------|----------|--|--|--|
|                                                                                                   | <u>Estuarine Zones (hectares)</u> |           |               |          |  |  |  |
| Tidal Elevat                                                                                      | ion                               |           |               |          |  |  |  |
| Range (m)                                                                                         | Plume                             | Estuarine | Tidal-        | Total    |  |  |  |
|                                                                                                   | & Ocean                           | Mixing    | Fluvial       |          |  |  |  |
| 0 - +1                                                                                            | 105.3                             | 3,061.8   | 1,186.7       | 4,353.8  |  |  |  |
| 01                                                                                                | 133.7                             | 4,163.4   | 2,928.2       | 7,225.2  |  |  |  |
| < -1                                                                                              | 4,001.4                           | 16,536.2  | 11,627.6      | 32,165.1 |  |  |  |
|                                                                                                   |                                   |           | Estuary Total | 43,744.1 |  |  |  |

Table 2. Estimated surface areas (hectares) of intertidal and subtidal habitats in three estuarine zones of

#### 2.1.3 Sampling Methods

#### Epibenthic Zooplankton

Epibenthic Suction Pump

Epibenthic zooplankton in tidal flat and demersal slope habitats were sampled quantitatively with a hydraulic pump system which filtered  $0.025 \text{ m}^3$  of the benthic boundary layer, i.e. the water column 0.25 m over  $0.1 \text{ m}^2$  of the bottom (Figure 4). At least 150 L of water, as measured by an in-line flowmeter, were filtered unless there was an indication of sand being lifted from the substrate, in which case pumping was terminated in order to avoid contamination by benthic infaunal animals such as nematodes, which would have biased and overestimated epibenthic standing stock. Nested plankton nets positioned in a sampling cylinder at the end of the pump system filtered the sample according to three mesh size categories: (1) 0.500 mm, (2) 0.253 mm, and (3) 0.130 mm. Duplicate samples were collected from adjacent, similar epibenthic areas in as short a time as possible (~5 min).

#### Epibenthic Sled

Epibenthic zooplankton in channel bottom habitats were sampled quantitatively with an opening-closing 0.5-m epibenthic sled equipped with two 0.130 mm mesh nets (Figure 5). Tow time on the bottom, once the sled doors had been opened, was two minutes against the prevailing current if present. Sampling volume was recorded in situ by propeller flowmeters in each net (Section 2.2).



Figure 4. Epibenthic suction pump system utilized to quantitatively sample epibenthic zooplankton in tidal flat and demersal slope habitats in the Columbia River Estuary. Measurements are in cm.



 $\Box$ 

Π

 $\left[ \right]$ 

Π

Figure 5. Epibenthic sled utilized to quantitatively sample epibenthic zooplankton in channel bottom habitats in the Columbia River Estuary. Sled is illustrated without open-closing device attached.

#### Motile Macroinvertebrates

#### Beach Seine

Motile macroinvertebrates and associated fishes in demersal slope habitats were sampled with a 37-m beach seine equipped with a finemeshed bag, constructed of 6-mm mesh knotless nylon, located in the middle of the net. The wings of the net were 18-m long and were constructed of 2.86-cm mesh. Designed to sweep as close to the bottom as possible, the seine was equipped with a solid-core leadline which outweighed the buoyancy provided by the floats along the toprope (floatline). Polypropylene ropes for hand-hauling the seine were attached to the spreader bars located at the end of each wing. Duplicate sets were made along adjacent sections of beach in as short a time as possible (~15 min) during daylight low tide periods. The net was set parallel to and 30 m from the shoreline and smoothly hauled in perpendicular to the beach in order to consistently sample a known benthic area and water volume, i.e.  $520 \text{ m}^2$  and  $790 \text{ m}^3$ , respectively.

#### Bottom Trawl

Motile macroinvertebrates and associated fishes in tidal flat and channel bottom habitats were sampled with a 4.9-m semi-balloon trawl equipped with a fine-mesh cod end constructed of 6-mm mesh nylon. The mesh size at the mouth opening was 3.8 cm and was constructed of #15 When effectively deployed, this net had a net opening of nylon twine. ~86.4 cm x 3.1 m. Sampling volume was recorded in situ using a propeller flowmeter suspended in the mouth of the net from the toprope. The starting and ending location of each trawl sample was also recorded on a NOAA chart. Duplicate, two minute tows were made in adjacent, similar benthic areas, one with and one against the prevailing current if present, in as short a time as possible. Sampling was conducted during daylight slack high tide periods although some channel collections were made at other times in the tidal cycle.

#### 2.2 PHYSICAL MEASUREMENTS

Physical measurements documented during each sample collection (constituting two replicates) at each site included temperature (°C measured with mercury thermometer) and salinity (°/oo measured with refractometer) of a water sample collected from the sample depth using a 5-L Van Dorn water sampler. Sample depth was determined from the boat's fathometer recording corrected for the transducer depth. Water volumes filtered by the epibenthic sled were estimated using General Oceanics model 2030 digital flowmeters suspended in the mouths of the two nets.

#### 2.3 FIELD SAMPLE PROCESSING

Zooplankton samples were washed from cod end buckets using filtered water from the sample location and poured into 473-cc PVC jars and 10% bufferred formalin added to produce at least a 5% formalin solution. The label added to the sample before sealing included sample number, station number, date, time, gear, collector, and contents.

Samples from beach seine and bottom trawl collections were separated into motile macroinvertebrates and fishes. All organisms saved for later processing were preserved in 10% bufferred formalin with labels describing the information listed above. Except for a subsample preserved for stomach contents analysis, large macroinvertebrates such as crab were released after enumeration, weighing, individual length measurements, and sex determination. Shrimp and mysids were preserved in total. Fishes were also preserved in total except in the case of large catches, which were systematically subsampled and the remainder released. Large specimens reserved for preservation were cut open along the abdominal cavity to allow penetration of the formalin to the stomach. Although the fish data is not reported in this report, it has been utilized in the interpretation of the epibenthic organism distribution and abundance and in the integration of the overall CREDDP results (Simenstad et al. 1984).

#### 2.4 LABORATORY SAMPLE PROCESSING

After five or more days of fixation in the formalin solution zooplankton samples were sieved to remove the formalin and subsequently preserved in 45% isopropanol in labeled vials. Rose bengal dye was added to the 0.250 mm and 0.125 fractions at this time in order to stain the animals for better sorting. If necessary prior to sorting, the 0.125 mm fractions of each replicate were panned to remove sand. Organisms were sorted to taxa and life history stages, enumerated, and weighed (damp wet weight) to the nearest 0.001 g.

Selected taxa were measured for size frequency analysis. Length measurements of gammarid amphipods constituted the distance between the anterior tip of the carapace (including rostrum if present) to tip of telson with the animal stretched to full length. Lengths of harpacticoid, calanoid, and cyclopoid copepods, euphausiids, mysids, and shrimps were measured as the tip of the rostrum to the tip of the telson. Crabs were measured by maximum carapace width, i.e., the distance inside the posterior-most teeth arranged along the lateral margin of the carapace.

Although systematic analyses of macroinvertebrate stomach contents were not included in the work unit objectives, quantitative processing of a small subset of representative Crangon franciscorum and Neomysis mercedis samples was conducted in order to gain some information on composition and temporal/spatial variation in their food habits. Procedures for dissection and examination of stomach and intestine contents generally followed those of Kost and Knight (1975). An incision was made or the exoskeleton teased apart along the dorsal surface of the organism and the gastrointestional tract was removed and placed in a drop of glycerine on a microscope slide. The stomach was separated from the intestine, gently ruptured, and the contents spread throughout the glycerine. A cover slip was placed over the contents and the slide was allowed to dry overnight. The prepared slides were examined under a dissecting microscope and the taxa, life history stages, and parts of organisms were identified and enumerated.

Dungeness crab stomachs were examined qualitatively by dissecting from preserved specimens and the contents distributed through water in a

Petri dish. Prey taxa were identified and their number estimated using a dissecting microscope.

#### 2.5 DATA ANALYSIS

#### 2.5.1 Coding

All epibenthic zooplankton and motile macroinvertebrate data were recorded on NODC-type computer forms (Pacific Northwest River Basins Commission 1980b; Mercier 1984) which utilize the NODC taxonomic code system of assigning up to a 12 digit numeric code to identify aquatic organisms to any phylogenetic level.

#### 2.5.2 Transfer

Once checked for errors and omissions, raw data recorded on the computer forms were keypunched on standard 80-column computer cards. The data cards were then read into a Cyber 173/750 computer located at the University of Washington's Academic Computer Center where the data was stored on permanent disk and magnetic tape for retrieval and analysis.

#### 2.5.3 Tabulation and Statistical Summary

Collection, environmental conditions, and biological sampling conditions data were tabulated and basic statistics generated for measured variables using the FRI computer program SAMPLE SUMMARY (FRG-370).

Tabulation and basic statistical summarization of the raw epibenthic zooplankton data were performed using the FRI computer program SUPERPLANKTON (FR 363) specifically developed for analysis of the NODC-type zooplankton data format. The program tabulates the plankton collections by various gear types, sites, and collection periods. The number and wet weight data, by taxa and life history stage, is adjusted to a standard sample volume and the density and standing crop  $(m^{-3})$  is computed. The percentage numerical and gravimetric composition and a number of diversity indices for the total composition are also calculated. The structure of the NODC taxonomic code enables the truncation of the code by two, four, and six digits to standardize the animals by genus, family, and class, respectively. SUPERPLANKTON is designed to operate at any one of these specified truncation levels and can produce tables either on each life history stage or on pooled life history stages (e.g. separating eggs) per taxa.

Raw data from motile macroinvertebrate and associated fish catches were entered separate data files. Tabulation and basic statistical summarization of these data were accomplished using the FRI computer program CATCH SUMMARY (FRG 368).

Macroinvertebrate food habits data were tabulated and summarized for basic composition and statistics using FRI computer program GUTBUGS (FR 360). Summary data from SUPERPLANKTON tabulations and other related physical and biological data were input into a summary data matrix using a modified (by Dr. James Anderson, FRI/UW) version of Hewlett-Packard's (HP) Basic Statistics and Data Manipulation Pac (BSDM) installed on an HP-87 microcomputer. Data were then manipulated for use in plotting or further anal ysis using other HP software.

#### 2.5.4 Correlative Physical and Biological Data

Physical and biological data which could be related to spatial and temporal composition, distribution, and standing stock of epifauna, but which were not obtained during Epibenthic Organisms Work Unit research, were obtained directly or from the reports submitted by other CREDDP researchers. Sediment structure data from or near the epifauna sampling sites, which included mean phi, skew, coarsest 1%, and % silt and clay, were obtained from Sedimentation Work Unit data through the cooperation of Chris Sherwood (Oceanography, UW). River discharge data and tidal range and amplitude data from Astoria and Wauna were obtained from the Circulation Work Unit through the assistance of David Jay (Geophysics, UW). Chlorophyll a and organic seston concentrations (from deepest measurement) at or near epibenthic sampling stations were extracted from data generated from Water Column Primary Production Work Unit research, courtesy of Larry Small and Bruce Frey (Oceanography, OSU). These data were combined with the Epibenthic Organisms Work Unit data in the summary data matrix for analysis (Section 2.5.3).

#### 2.5.5 Relationship between Epibenthic Organism Standing Crop and Other Biotic and Abiotic Variables

Partial correlation coefficients among biotic and abiotic variables were generated from the summary data matrix using Hewett-Packard's Basic Statistics and Data Management (BSDM) program on series 80 microcomputers.

#### 2.5.6 Numerical Classification

Epibenthic zooplankton structure was investigated through agglomerative hierarchical classification (clustering) of density data using the Bray-Curtis dissimilarity measure (Bray and Curtis 1959) and group averaging sorting. Similarities among sampling sites were determined using transformed (ln  $[X_{ij} + 1]$ ) data and taxa assemblages were clustered using standardized  $(X_{ij}/\Sigma X_{ik})$  data, where  $X_{ij}$  represents the density of taxa i in collection j and  $\Sigma X_{ik}$  is the sum of all taxa. Clustering analyses and plotting were conducted through the interactive Program CLUSTER, developed by James A. Keniston and Albert V. Tyler at Oregon State University, Corvallis, Oregon, and installed on the University of Washington's Academic Computer Center's Cyber 170/750 computer. The reader is referred to Clifford and Stephenson (1975) and Gauch (1982) for more detailed information regarding these analytical methods.

#### 2.6 QUALITY ASSURANCE PROCEDURES

Taxonomic identifications of rare or uncertain taxa, particularly harpacticoid copepods, were verified or resolved by Mr. Jeffery Cordell,

Project Manager. All field and laboratory data were both manually and computer verified. Manual verification involved at least two reviews of the data forms prior to data entry. Computer verification involved checking for error messages produced by the various FRI data analysis programs and review of the summary tables and basic statistics for data out of expected ranges and other anomalies. Any errors were noted on the original data recording sheets and corrected on all computer files using a text/data editor; the 80-column computer cards, however, were not corrected.

#### 2.7 DATA ADEQUACY

Data for some sites were unavoidably missed during some months due to weather conditions, mechanical breakdowns of sampling vessels, and lost or damaged sampling gear under tight time constraints. Of the possible 136 collections (duplicate samples), two epibenthic zooplankton and 23 macroinvertebrate collections were missed. In addition, eight temperature and 35 salinity measurements were missed due to malfunction, loss, or unavailability of instruments.

Due to the inherent variability in estimation of sampling effort, some data will overestimate the actual variability in epibenthic organism standing stock. Specifically, estimations of the benthic area sampled by the beach seine and bottom trawl were based on several tenuous assumptions. It was assumed that: (1) the nets did not lift off the bottom during the period they were towed; (2) they deployed properly and consistently on all sets which were not aborted for obvious evidence of gear malfunction; (3) the trawl tow beginning and ending points estimated from the bathymetric charts approximated the actual distance trawled; and, (4) the trawl did not catch a significant number of macroinvertebrates and fishes in being dropped or raised through the water column. The epibenthic sled was considered susceptible only to errors associated with the first assumption (above) because the opening-closing mechansism eliminated contamination from water column animals and because the effort estimate was based upon the digital flowmeter readings.

Quantitative sampling of extremely evasive organisms also biases these data. Standing stock estimates for mysids, for example, are probably underestimated because an unknown proportion were able to evade the epibenthic pump and sled but they were too small to be effectively retained by the beach seine and bottom trawl. The diurnal sampling design also minimizes representative sampling of nocturnally-active organisms such as male <u>Corophium</u> amphipods (Davis 1978).

#### 3.1 TAXONOMIC COMPOSITION

#### 3.1.1 Epibenthic Zooplankton

Based on the highest resolution of taxonomic and life history categories, 406 categories of epibenthic zooplankton were sampled in tidal flat and demersal slope habitats and 292 categories were identified from channel bottom habitats (Appendix B). Harpacticoid, calanoid, and cyclopoid copepods were the more prominent taxa numerically (76.4% of the total mean density; Table 3). The calanoid <u>Eurytemora affinis</u> was the most abundant species but harpacticoids (primarily an undescribed ectinosomid [Ectinosoma sp.?], <u>Scottolana canadensis</u>, <u>Microarthridion littorale</u>, <u>Tachidius triangularis</u>, and <u>Attheyella</u> sp.) comprised almost 35% of the mean density over the 18 month sampling period; <u>Cyclops</u> spp. were the most abundant cyclopoids (Table 3).

Seasonal changes in numerical composition of epibenthic zooplankton taxa were prevalent during the monthly sampling period (March - August 1980; Figure 6). In the shallow habitats sampled by the epibenthic pump, ectinosomatid harpacticoids were prominent during the late winter fluctuating flow months and Eurytemora affinis dominated during the spring freshet season. Ostracods (Limnocythere) comprised over half the densities in the early summer-fall low flow season. Copepod larvae (undifferentiated nauplii and early stage copepodids) were also numerically abundant from April through July. Deeper habitats sampled by the epibenthic sled also showed Eurytemora affinis and copepod larvae to dominate during the spring freshet season, but freshwater forms (e.g. Daphnia, Cyclops) became denser with the onset of the summer-fall low flow season. Scottolana canadensis was also more prominent between the late spring freshet and early summer-fall low flow seasons.

The gravimetric composition illustrated somewhat different seasonal changes (Figure 7). Cumaceans (Leucon sp.), amphipods (Corophium salmonis), and Eurytemora affinis together combined for ~60% of the epibenthic zooplankton density in shallow habitats during the late winter fluctuating flow season but Eurytemora affinis alone completely dominated (~70%) the standing crop during May. As the spring freshet season progressed, Crangon franciscorum and Neomysis mercedis displaced Eurytemora. Other taxa of mysids (Acanthomysis macropsis, Archaeomysis Neomysis integer) and gammarid amphipods (Anisogammarus grebnitzkii, spinicorne, Eogammarus confervicolus, E. Corophium sp., oclairi, Eohaustorius sp., Paraphoxus sp.) were numerically rare but often comprised a significant (i.e., >1%) portion of the standing crop at some stations, particularly those in euhaline waters close to the mouth of the estuary.

#### 3.1.2 Motile Macroinvertebrates

Overall, <u>Crangon franciscorum</u> (sand shrimp) completely dominated the motile macroinvertebrate assemblage in the estuary in terms of both density and standing crop. Two other congeneric shrimps, <u>C. nigricauda</u> and <u>C. stylirostris</u>, also occurred in the bottom trawl collections in

Table 3. Numerical composition (%) of prominent (>1% of mean density) zooplankton taxa (class, family) among epifauna in the Columbia River Estuary, March 1980 - July 1981.

| Taxa                            | Principal Life<br>History Stages | (<br>(% of | Numeric<br>Composit<br>mean de | cal<br>tion<br>ensity)                        |
|---------------------------------|----------------------------------|------------|--------------------------------|-----------------------------------------------|
| Rotifera                        |                                  |            |                                | <u>, , , , , , , , , , , , , , , , , , , </u> |
| Cladocera                       | aduits                           |            |                                | 2./                                           |
| Danhaidan                       |                                  |            | 1 2                            | 4.7                                           |
| Danknia Spp.                    | iuveniles                        | 07         | 1.5                            |                                               |
| D. puler Levdig                 | juveniles+adults                 | 0.1        |                                |                                               |
| D. rosea Sars                   | ,                                | 0.2        |                                |                                               |
| D. galeata Sars                 | 21                               | 0.1        |                                |                                               |
| D. retrocurva Forbes            | juveniles                        | 0.3        |                                |                                               |
| D. parvula Fordyce              | adults                           | <0.1       |                                |                                               |
| Bosmidae                        |                                  |            | 2.5                            |                                               |
| Bosmina longirostris            |                                  |            |                                |                                               |
| U.F. Muller                     | nauplii→adults                   | 2.5        |                                |                                               |
| Ustracoda                       |                                  |            | 2.4                            |                                               |
| Limnocytheridae                 |                                  | 1 0        | 1.8                            |                                               |
| Composed?                       |                                  | 1.8        |                                | 7C A                                          |
| copepoda<br>"                   | naunlii                          |            | 10 <i>1</i>                    | 70.4                                          |
| [a]anoida                       | naupii<br>naupii                 |            | 10.4                           |                                               |
| an ano raa                      | naupiri-Addres                   | 4 6        | 17.7                           |                                               |
| Temoridae                       | conepodids adults                | 4.5        | 12 2                           |                                               |
| Epischura nevadensis Lillieborg | eopepouros /udurts               | Z0 1       | 12.2                           |                                               |
| Eurotemora affinis (Poppe)      | conepodids+adults                | 12 2       |                                |                                               |
| Harpacticoida                   | nauplii->adults                  |            | 34.9                           |                                               |
|                                 | nauplii & copepodids             | 0.3        |                                |                                               |
| Canuellidae                     | ···· I ···F-F-····-              |            | 8.7                            |                                               |
| Scottolana canadensis           |                                  |            |                                |                                               |
| (Willey)                        | copepodids→adults                | 8.5        |                                |                                               |
| Ectinosomatidae                 | n                                |            | 17.5                           |                                               |
| Microsetella Brady and          |                                  |            |                                |                                               |
| Anderson sp.                    | adults                           | <0.1       |                                |                                               |
| Ectinosoma Boeck sp.            | copepodids→adults                | 0.1        |                                |                                               |
| lachidiidae                     |                                  |            | 5.3                            |                                               |
| Microarthridion littorale       |                                  | 2.6        |                                |                                               |
| (Poppe)                         |                                  | -0.3       |                                |                                               |
| Tachiaius Lilineborg sp.        | copepoalas                       | <0.1       |                                |                                               |
| Shon and Tai                    | cononodide vadul te              | 1 0        |                                |                                               |
| Giechrecht                      |                                  | 0.3        |                                |                                               |
| Canthocamotidae                 |                                  | 0.5        | 22                             |                                               |
| Bruccamptus Chappuis sn         | adults                           | 05         | 2.2                            |                                               |
| Mesochra lillejeboraj Boeck     | 464165                           | <0.1       |                                |                                               |
| M. alaskana M.S. Wilson         | N                                | <0.1       |                                |                                               |
| M. pygmaea (Claus)              |                                  | <0.1       |                                |                                               |
| Attheyella Brady sp.            | u                                | 1.7        |                                |                                               |
| Cyclopoida                      | nauplii+adults                   |            | 5.3                            |                                               |
| Cyclopidae                      | copepodids+adults                |            | 5.1                            |                                               |
| Halicyclops Norman sp.          | 11                               | <0.1       |                                |                                               |
| Cyclops O.F. Muller sp.         |                                  | 1.3        |                                |                                               |
| C. vernalis fischer             |                                  | 1.7        |                                |                                               |
| C. Dicuspidatus thomasi S.A. Fo | rbes "                           | <1.9       |                                |                                               |
| Mesocyclops edax (S. A. Forbes) | adult                            | 0.1        |                                |                                               |
| raracyclops fimbriatus          |                                  |            |                                |                                               |
| popper (renderg)                | copepoalas adults                | 0.1        |                                |                                               |
| O pimilia Claus                 | n.d] +                           | 1.0        |                                |                                               |
| V. STATUTE CIAUS                |                                  | <u></u>    |                                |                                               |

 $\left[ \right]$ 

 $\Box$ 

 $\left[\right]$ 

Π

Ţ



Legend

Ea = Eurytemora affinis L = Limnocythere sp. cl = undifferentiated copepod larvae Lo = Laophontidae Lu = Leucon sp.= nematodes n Nm = <u>Neomysis</u> mercedis = oligochaetes 0 Sc = Scottolana canadensis Tt = Tachidius triangularis

Accumulative numerical composition (%) of Figure 6. epibenthic zooplankton in the Columbia River Estuary, March - August 1980.

cc = calanoid copepodites

Cf = Crangon franciscorum Cs = Corophium salmonis

= Cyclops spp.

Da = Daphnia spp.

Di = Diaptomus spp.

= Ectinosomatidae

С

Ε


Legend

| cc         | = | calanoid copepodites            |
|------------|---|---------------------------------|
| <b>c</b> 1 | = | undifferentiated copepod larvae |
| С          | = | Cyclops spp.                    |
| Cf         | = | Crangon franciscorum            |
| Cs         | = | Corophium salmonis              |
| Da         | = | Daphnia spp.                    |
| Di         | = | Diaptomus spp.                  |
| Ε          | ≐ | Ectinosomatidae                 |
|            |   |                                 |

| Ea                     | = | Eurytemora affinis     |
|------------------------|---|------------------------|
| L                      | = | Limnocythere sp.       |
| Lo                     | - | Laophontidae           |
| $\mathbf{L}\mathbf{u}$ | = | Leucon sp.             |
| n                      | = | nematodes              |
| Nm                     | ⊒ | Neomysis mercedis      |
| 0                      | = | oligochaetes           |
| Sc                     | = | Scottolana canadensis  |
| Τt                     | = | Tachidius triangularis |
|                        |   |                        |

Figure 7. Accumulative gravimetric composition (%) of epibenthic zooplankton in the Columbia River Estuary, March - August 1980.

euhaline waters at the outer margin of the estuary (almost exclusively at the Ilwaco Channel site) but were neither common nor abundant. Dungeness crab (<u>Cancer magister</u>) was also prominent but its occurrence was generally restricted to the plume and ocean zone at the entrance of the estuary and channel bottom habitats in the seaward region of the estuarine mixing zone.

## 3.2 DENSITY

#### 3.2.1 Epibenthic Zooplankton

The density of epibenthic zooplankton over all sites in the estuary averaged  $18,805 + 3,839 \text{ m}^{-2}$  (+ standard error) but ranged broadly between 95 and  $40,000 \text{ m}^{-2}$ ; the 95% confidence interval about the mean density was 11,210 to 26,400 m<sup>-2</sup>. The distribution of the density estimates approximated a negative binomial distribution with a median value of 5,204 m<sup>-2</sup>.

Epibenthic zooplankton densities were quite divergent in the three habitats, however. Highest densities occurred on tidal flats ( $x = 21,809 \pm 4,671 \text{ m}^{-2}$ ; 95% confidence interval between 12,455 and 31,165 m<sup>-2</sup>) compared to densities in demersal slopes (12,562 \pm 4,180 \text{ m}^{-2}) and channel bottom habitats (9,996 + 3,242).

Spatial distributions of epibenthic zooplankton densities through the estuary (Figures 8-10) suggested different degrees of seasonal influences among the three habitats. Maximum densities in tidal flat habitats during the spring freshet season (Figure 8) occurred between 15 km and 20 km from the mouth of the estuary (Youngs Bay and Bridge flat sites). During summer-fall low flow months the density distribution appeared to be bimodal at either end of the estuary, although the mode at the landward end of the estuary is based on only one data point, which is insufficient without other evidence to indicate a "mode". Densities during winter fluctuating flow months were relatively uniform through the estuary except for maxima at Baker Bay and Youngs Bay, i.e. within 20 km from the mouth of the estuary.

Demersal slope habitats (Figure 9) illustrated a similar density distribution during spring freshet months, but densities during both summer-fall low flow and winter-fluctuating months were relatively uniformly distributed except for one maximum at Sand Island during the summer-fall period.

Although epibenthic zooplankton densities in channel bottom habitats (Figure 10) during spring freshet months were also highest within the estuarine mixing zone, the density distribution during summer-fall low flow months indicated a shift in densities up (landward) the estuary into the tidal fluvial zone. Densities during winter fluctuating flow months were comparatively low and uniformly distributed throughout the estuary.

Habitat-associated differences in epibenthic zooplankton densities are also illustrated by time series over the 18-month sampling period (Figure 11; note continuous Julian date). Except for unusually high







Figure 9. Spatial distribution (km from mouth of estuary) of epibenthic zooplankton density (individuals m<sup>-2</sup>) in demersal slope habitats during three hydrologic seasons in the Columbia River Estuary, March 1980 -July 1981.



Figure 10. Spatial distribution (km from mouth of estuary) of epibenthic zooplankton density (individuals m<sup>-2</sup>) in channel bottom habitats during three hydrologic seasons in the Columbia River Estuary, March 1980 -July 1981.



Figure 11. Temporal distribution (Julian date) of epibenthic zooplankton density (individuals m<sup>-2</sup>) in six tidal flat, five demersal slope, and five channel bottom habitats in the Columbia River Estuary, March 1980 - July 1981.

densities at Bridge Flat in October 1980 and Baker Bay in April 1981, densities at the five tidal flat sites consistently showed maximum in May and July-August. Densities then decreased to minima during the winter and gradually increased from April to July 1981. Densities in demersal slope habitats generally exhibited only one summer (August) maxima except for a spring (April-May) peak at the Bridge Slope site. Only one channel bottom site (Bridge Channel) showed a spring-early summer maxima, while the other four sites all illustrated peak densities occurring in October.

#### 3.2.2 Motile Macroinvertebrates

Motile macroinvertebrate density averaged  $0.09 \pm 0.02$  m<sup>-2</sup> across the estuary, ranging between 0 and 1.72 m<sup>-2</sup> with a 95% confidence interval of 0.04 and 0.14 m<sup>-2</sup>.

The rank order of macroinvertebrate density by habitat also followed that of the epibenthic zooplankton, averaging higher in tidal flat habitats  $(0.12 \pm 0.04 \text{ m}^{-2})$  than in demersal slope  $(0.08 \pm 0.04 \text{ m}^{-2})$  or channel bottoms  $(0.07 \pm 0.04 \text{ m}^{-2})$ .

Density distributions of motile macroinvertebrates (principally Crangon and mysids) through the estuary changed among hydrologic seasons (Figures 12-14). Macroinvertebrates in tidal flat habitats were concentrated within 20 km of the estuary's mouth during the spring freshet season (Figure 12) but had expanded, though in lower density ( $^{\circ}0.1 \text{ m}^{-2}$ ), to Grays Bay (km 32) during the summer-fall low flow season. During winter fluctuating flow months, densities both decreased throughout the estuary and become concentrated back in the lower bays.

Motile macroinvertebrates in demersal slope habitats were considerably denser in the central portions of the estuary (Bridge Slope) and showed the same summer-fall expansion to the lower reaches of the tidal fluvial zone (Figure 13).

Although densities in channel bottom habitats during the spring freshet season were lower than those in the shallower habitats (Figure 13), the highest density during summer-fall low flow months occurred in the channel habitat at Rice Island (Figure 14). By winter, densities had declined dramatically throughout the estuary.

In addition to being concentrated in the lower 10 km of the estuary, densities of Dungeness crab were significant (i.e., >0.01 individuals  $m^{-2}$ ) only during the spring freshet season (Figure 15). This pattern may not be representative of crab densities at and outside the mouth of the estuary, however. Based upon data from concurrent 8-m trawl catches by NMFS in the channel habitat at the mouth (NMFS stations 1 and 2), crab densities ~0.2 individuals  $m^{-2}$  may persist into the summer-fall low flow season (Figure 15).



Figure 12. Spatial distribution (km from mouth of estuary) of motile macroinvertebrate density (individuals m<sup>-2</sup>) in tidal flat habitats during three hydrologic seasons in the Columbia River Estuary, March 1980 - July 1981.



Figure 13. Spatial distribution (km from mouth of estuary) of motile macroinvertebrate density (individuals m<sup>-2</sup>) in demersal slope habitats during three hydrologic seasons in the Columbia River Estuary, March 1980 -July 1981.



Figure 14. Spatial distribution (km from mouth of estuary) of motile macroinvertebrate density (individuals m<sup>-2</sup>) in channel bottom habitats during three hydrologic seasons in the Columbia River Estuary, March 1980 -July 1981.



Figure 15. Spatial distribution (km from mouth of estuary) of Dungeness crab (<u>Cancer magister</u>) density (individuals m<sup>-2</sup>) during three hydrologic seasons and among three habitats in the Columbia River Estuary, March 1980 -July 1981. Open symbols indicate crab densities from comparable CREDDP collections by NMFS.

## 3.3 STANDING CROP

## 3.3.1 Epibenthic Zooplankton

Due to the relatively uniform size and biomass of epibenthic zooplankton, standing crop estimates mirrored the density distribution. Average standing crop at all sites over the sampling period was  $185.80 + 34.23 \text{ mg m}^{-2}$ , ranged between 1.8 and  $3864.5 \text{ mg m}^{-2}$ , and had a  $95\overline{\times}$  confidence interval around the mean of 118.1 to  $253.5 \text{ mg m}^{-2}$ . The median of the standing crop distribution was 74.0 mg m<sup>-2</sup>. Spatial and temporal trends followed those illustrated by the density data.

## 3.3.2 Motile Macroinvertebrates

Standing crop of Dungeness crab and crangonid shrimp, the dominant motile macroinvertebrates, averaged  $0.17 \pm 0.06$  g m<sup>-2</sup>, ranged between 0.0 and 6.34 g m<sup>-2</sup>, and had a 95% confidence interval around the mean of 0.05 to 0.30 g m<sup>-2</sup>. The median of the standing crop distribution was 0.0 because almost 85% of the 114 samples were 0.0. Trends in seasonal distribution of standing crop resembled those of density, although sites in the plume and ocean zone during spring and winter months and lower reaches of the estuarine mixing zone during summer-fall months showed somewhat higher standing crop values than the other sites due to the presence of Dungeness crab.

## 3.4 RELATIONSHIPS BETWEEN EPIBENTHIC ORGANISM STANDING CROP AND OTHER BIOTIC AND ABIOTIC VARIABLES

There are several partial correlation coefficients among epifauna density and standing crop and other biotic and abiotic variables (Table 4) which, although they cannot be considered causal, may indicate limiting factors on faunal distribution and standing stock. Both epibenthic zooplankton density (EPIDEN) and standing crop (EPISC), however, were not strongly correlated with any one variable, the highest correlation (0.267) being between standing stock and sediment skew. Sediment skew was also positively (0.688) correlated with motile macroinvertebrate standing crop (MACSC), although total fish density (FSHDEN) was even more correlated (0.709). Much of the positively correlation between fish density and macroinvertebrate standing crop may be attributable to the presence of starry flounder (Platichthys stellatus) and their predation upon Crangon franciscorum, as indicated by the relatively high (0.329) correlation between starry flounder standing crop (SFSC) and Crangon densities (CRADEN). Motile macroinvertebrate standing crop, Crangon density, and starry flounder standing crop were all positively correlated (0.349 to 0.372) with salinity and/or negatively with the distance from the mouth of the estuary (RIVKM).

## 3.5 EPIBENTHIC ZOOPLANKTON ASSEMBLAGE STRUCTURE

Numerical classification of sampling sites and taxa indicated dramatic changes in assemblage structure among months (Appendix C). Station and taxa clusters delineated during three months representing the three hydrologic seasons illustrated the dynamic structure of these assemblages (Figure 16a-c). In May, during the spring freshet season,

Table 4. Partial correlation coefficient matrix of epibenthic organism standing stock variables and other biotic and abiotic variables in the Columbia River Estuary, March 1980 - July 1981.

|                                                                                                                                                                                                                                              |                                              |                                              | •                                                     |                                                      |                                               |                                        | •                                              |                                                       |                                                                     |                                                                     |                                                                                |                                                                                        |                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                              | 2<br><u>EP</u> ISC                           | 3<br>MACDEN                                  | 4<br>MACSC                                            | 5<br>CRADEN                                          | - 6<br>JDATE                                  | 7<br>TIME                              | 8<br>RIVKM                                     | 9<br>SITELV                                           | 10<br>TEMPC                                                         | 11<br>SALTY                                                         | 12<br>RIVDIS                                                                   | 13<br>TRWAUN                                                                           | 14<br>THWAUN                                                                                     |
| EPIDEN<br>EPISC<br>MACDEN<br>MACSC<br>CRADEN<br>JDATE<br>TIME<br>RIVKM<br>SITELV<br>TEMPC<br>SALTY<br>RIVDIS<br>TRWAUN<br>THWAUN<br>THASTO<br>THASTO<br>THASTO<br>XPH1<br>SKEW<br>COA1%<br>%S-C<br>CHLA<br>FSHDEN<br>SAMDEN<br>SEDEN<br>SFSC | . 794                                        | .121                                         | 037<br>054<br>.094                                    | .142<br>.131<br>.996<br>.049                         | 083<br>079<br>085<br>066<br>074               | 046<br>066<br>117<br>078<br>121<br>133 | 104<br>052<br>184<br>278<br>161<br>065<br>.356 | 100<br>061<br>032<br>007<br>025<br>.037<br>100<br>020 | .123<br>.112<br>.161<br>.126<br>.184<br>130<br>.037<br>.080<br>.050 | 037<br>063<br>018<br>.372<br>058<br>041<br>224<br>742<br>086<br>147 | 062<br>110<br>.007<br>048<br>001<br>.046<br>.121<br>.025<br>.038<br>234<br>170 | 071<br>095<br>.004<br>011<br>055<br>.020<br>.177<br>.089<br>.081<br>165<br>061<br>.410 | 003<br>.002<br>.078<br>.186<br>.061<br>.044<br>.032<br>012<br>.014<br>.383<br>058<br>235<br>.216 |
| EPI<br>2 - EPI<br>3 - MAC<br>4 - MAC<br>5 - CRA                                                                                                                                                                                              | IDEN =<br>ISC =<br>CDEN =<br>CSC =<br>ADEN = | Epibenth<br>Epibenth<br>Motile m<br>Crangoni | ic zoop<br>ic zoop<br>acroinve<br>acroinve<br>d shrim | lankton<br>lankton<br>ertebrat<br>ertebrat<br>densit | density<br>standin<br>e densi<br>e stand<br>y | g crop<br>ty<br>ing cro                | 8<br>9<br>10<br>9<br>11<br>12                  | - RIVKM<br>- SITELV<br>- TEMPC<br>- SALTY<br>- RIVDIS | = Dist<br>/ = Tida<br>= Temp<br>= Sali<br>S = Rive                  | ance (k<br>1 eleva<br>9 erature<br>1 nity (%<br>9 er disch          | (m) from<br>ltion (m)<br>(C)<br>(arge (10                                      | mouth of<br>) of samp<br>)00 m <sup>3</sup> s <sup>-1</sup>                            | f estuary<br>pling site<br>)                                                                     |

- 6 JDATE = Julian date
- 7 TIME = Local time of sampling

11 - SALTY  $\Rightarrow$  Salinity (%) 12 - RIVDIS  $\Rightarrow$  River discharge (1000 m<sup>3</sup>s<sup>-</sup>) 13 - TRWAUN  $\Rightarrow$  Tidal range (m) at Wauna 14 - THWAUN  $\Rightarrow$  Tidal height (m) at Wauna

Table 4. Partial correlation coefficient matrix of epibenthic organism standing stock variables and other biotic and abiotic variables in the Columbia River Estuary, March 1980 - June 1981 - continued.

|          | 15       | 16        | 17      | 18      | 19      |         | 21    | 22       | 23       | 24       | 25      | 26       |
|----------|----------|-----------|---------|---------|---------|---------|-------|----------|----------|----------|---------|----------|
|          | TRASTO   | THASTO    | XPHI    | SKEW    | COA1%   | %S-C    | CHLA  | SESTON   | FSHDEN   | SAMDEN   | SFDEN   | SFSC     |
| EPIDEN   | .009     | 175       | .092    | .162    | .052    | .074    | - 190 | 138      | 015      | - 028    | 050     | 092      |
| EPISC    | .015     | 202       | .026    | .267    | .021    | 016     | 169   | .041     | - 020    | 007      | .001    | .023     |
| MACDEN   | .053     | 087       | .240    | .688    | .191    | 235     | - 109 | 000      | .071     | 035      | .219    | 355      |
| MACSC    | .171     | 066       | 068     | .162    | 077     | 103     | - 117 | 037      | .709     | 022      | 013     | .197     |
| CRADEN   | .033     | 097       | .243    | .084    | .174    | .239    | 116   | 013      | .038     | 034      | .214    | 329      |
| JDATE    | 064      | .151      | .012    | .001    | .076    | .010    | 353   | 300      | 085      | 117      | 202     | 171      |
| TIME     | .072     | 009       | .100    | 207     | .029    | .109    | .259  | 049      | .006     | .076     | 164     | 010      |
| RIVKM    | 021      | 016       | 190     | 451     | 357     | 081     | .620  | .146     | 160      | .183     | 024     | 363      |
| SITELV   | .062     | .047      | 444     | 241     | 240     | 383     | 094   | .043     | 116      | 032      | 294     | 297      |
| TEMPC    | .416     | 583       | .211    | .176    | .045    | .282    | .338  | .178     | .176     | 166      | .286    | .008     |
| SALTY    | 066      | .028      | .207    | .324    | .287    | .115    | 567   | 184      | .192     | 069      | .061    | .349     |
| RIVDIS   | 081      | .449      | 019     | 134     | .087    | .033    | .146  | .044     | 144      | 067      | 170     | 107      |
| TRWAUN   | .187     | .382      | 054     | 133     | 036     | 005     | .082  | 018      | 005      | 006      | 031     | 075      |
| THWAUN   | .936     | 148       | .046    | .031    | .024    | .099    | .437  | .183     | .295     | 014      | .238    | .140     |
| TRASTO   |          | 228       | .080    | .024    | .058    | .147    | .593  | .267     | .269     | 011      | .232    | .141     |
| THASTO   |          |           | 124     | 190     | 045     | 127     | 181   | 137      | 150      | .025     | 210     | 135      |
| XPHI     |          |           |         | . 389   | .671    | .934    | 014   | .123     | 029      | 124      | .255    | .335     |
| SKEW     |          |           |         |         | .561    | .252    | 259   | 019      | .084     | 144      | .056    | .195     |
| COA1%    |          |           |         |         |         | .507    | 133   | 006      | .072     | 257      | .125    | .346     |
| %S-C     |          |           |         |         |         |         | .130  | .120     | 064      | 056      | .233    | .268     |
| CHLA     |          |           |         |         |         |         |       | .447     | 121      | - 502    | 011     | 287      |
| SESTON   |          |           |         |         |         |         |       |          | 030      | .225     | .157    | .280     |
| FSHDEN   |          |           |         |         |         |         |       |          |          | 011      | .208    | .342     |
| SEDEN    |          |           |         |         |         |         |       |          |          |          | 010     | 046      |
| SESC     |          |           |         |         |         |         |       |          |          |          |         | .465     |
| 15 - TRA | ASTO = T | idal ran  | nge (m) | at Ast  | oria    |         | 21    | – CHLA   | = Chloro | phvll a  |         |          |
| 16 - TH  | ASTO = T | idal he   | ight (m | ) at As | toria   |         | 22    | – SESTON | = Organi | c seston |         |          |
| 17 - XPI | HI = M   | iean ø of | f sampl | ing sit | e sedin | ient    | · 23  | - FSHDEN | = Total  | fish den | sity    |          |
| 18 - SK  | EW = S   | kew of s  | samplin | g site  | sedimen | t       | 24    | - SAMDEN | = Juveni | le salmo | n densi | ty       |
| 19 - COA | A1% = C  | oarsest   | 1% of   | samplin | g site  | sedimen | t 25  | - SFDEN  | = Starry | flounde  | r densi | ty       |
| 20 - %S  | -C = %   | sand-co   | obble s | ampling | site s  | ediment | 26    | - SFSC   | = Starry | flounde  | r stand | ing crop |

35 -



Figure 16. Distribution of epibenthic zooplankton assemblage clusters in the Columbia River Estuary during three hydrologic seasons: (A) spring freshet season (represented by May 1980); (B) summer-fall low flow season (October 1980); and, (C) winter fluctuating high flow season (February 1981).







Figure 16. (cont.)

two station cluster groups were evident, one within and one above 25 km from the mouth of the estuary (Figure 16a). Stations located in the tidal fluvial zone were characterized almost entirely by a riverine assemblage of freshwater cyclopoid copepods and cladocerans, although another mixed group of cyclopoid and harpacticoid copepods, ostracods, and the gammarid amphipods <u>Corophium</u> spp. also occurred predominantly in the tidal flat and demersal slope habitats of the upper reaches of the estuary. Assemblages in the lower estuary were limited almost completely to euryhaline taxa, including one large group of harpacticoid copepods (e.g. <u>Scottolana canadensis</u>), the calanoid <u>Eurytemora affinis</u>, and three other two- or one-taxa groups of harpacticoids, mysids, and amphipods.

By October, at the end of the summer-fall low flow season, assemblage structure had become much more complex (Figure 16b). Station associations were less robust and fell into as many as five cluster groups: (1) channels within 20 km of the mouth of the estuary; (2) tidal flat and demersal slope habitats within 10 km of the mouth; (3) flats and slopes in the central portion of the estuary and a channel bottom station 40 km from the mouth; (4) flats, slopes, and channels between 30 and 35 km from the mouth; and, (5) flats and slopes in the upper region of the estuary >40 km from the mouth. Taxa clusters were equally complex and included fluvial, euryhaline, and euhaline fauna within several of the six clusters. Distribution of clusters characterized by euryhaline harpacticoids and Eurytemora extended well above the central portion of the estuary but euhaline taxa such as Acartia and Oithona occurred as far as 50 km from the mouth of the estuary.

In the winter fluctuating high flow season, represented by February 1981, the distribution of the clusters resembled that of the spring freshet season (Figure 16c). Seven taxa clusters again fell into discrete estuarine and fluvial station clusters.

3.6 FOOD WEB LINKAGES

## 3.6.1 Epibenthic Zooplankton

Review of literature describing food resources of phyolgeneticallyor ecologically-similar epibenthic zooplankton taxa indicated that most of the epibenthic crustaceans which dominate the assemblages in the estuary would be classified as detritivores (Lasker et al. 1977; Brown and Sibert 1977; Heinle et al. 1977; Rieper 1978; Vanden Berghe and Bergmans 1981) although large, more planktonic zooplankters such as Eurytemora affinis probably have the ability to utilize autotrophic (i.e. phytoplankton) as well as heterotrophic food resources (Heinle and Flemer 1975).

## 3.6.2 Motile Macroinvertebrates

Both <u>Neomysis</u> <u>mercedis</u> and <u>Crangon franciscorum</u> indicated omnivorous food habits (Table 4) but diet composition appeared to vary considerably by season and location within the estuary. A composite summary of all <u>Neomysis</u> examined from the June 1980 samples indicated that rotifers were the numerically prevalent food organism (36.8% of total), followed by diatoms (12.5%) and cladocerans (primarily <u>Bosmina</u> sp; 18.4%), during the spring freshet season. A composite of all <u>Neomysis</u> examined from Youngs Bay, however, indicated that predation upon epibenthic meiofauna, particularly harpacticoid copepods such as Ectinosomids (41.6%) and <u>Scottolana</u> <u>canadensis</u> (37.9%), was more typical of shrimp on that tidal flat.

<u>Crangon</u> <u>franciscorum</u> also illustrated similar temporal/spatial variability, although not in the same patterns. Shrimp collected from throughout the estuary in August 1980 had fed primarily upon <u>Scottolana</u> canadensis (61.0%) and secondarily upon diatoms (21.4%). Shrimp collected from Youngs Bay throughout the 18-month sampling period appeared to feed on the same two food resources but numerical composition had reversed to 62.6% diatoms and 22.7% Scottolana canadensis.

Qualititative analyses of juvenile Dungeness crab from the lower reaches of the Estuarine Mixing Zone indicated that they are carnivorous upon macroinvertebrate components of the benthic infauna and epifauna. Identifiable organisms included <u>Corophium</u> sp., <u>Neomysis mercedis</u>, <u>Cancer</u> <u>magister</u>, barnacle cyprid larvaea, and remains of bivalve molluscs and fish.

3.7 Crangon AND Neomysis POPULATION DYNAMICS

Length frequency distributions of <u>Crangon franciscorum</u> (represented by Youngs Bay, Figure 17) indicate that although maturing ("yearling") or adult shrimp are present in the lower half of the estuarine mixing zone during the winter and early spring (April), they have departed the estuary by May, presumably to reproduce in more euhaline environs (Israel 1936; Krygier and Horton 1975). Juveniles ("young-of-year") resulting from winter spawning offshore and in the plume and ocean zone of the estuary appear by April and continue to occupy and grow in the estuarine mixing zone. Suggestions of a bimodal size frequency distribution in August could indicate influx of juveniles from a second, later spawning, corresponding with Krygier and Horton's (1975) documentation of bimodal spawning in Yaquina Bay, Oregon.

Unlike <u>Crangon</u>, <u>Neomysis</u> <u>mercedis</u> reproduce and develop entirely within the estuary. Although they are distributed throughout the estuary, the center of their distribution tends to extend from the middle of the estuarine mixing zone into the tidal-fluvial zone. There is an apparent separation of sexes, as most of the mysids captured in the lower and central reaches of the estuary were males but low catches of females in general could indicate that sampling biases were involved (Williams 1983, Table 5). Gravid females were found primarily in lower reaches of the tidal fluvial zone between April and August (ibid).



Figure 17. Length (carapace) frequency distribution of sand shrimp (<u>Crangon franciscorum</u>) in Youngs Bay, Columbia River Estuary, March 1980 - August 1980.

PERCENT FREQUENCY

|                                         |                                                     | <u>Numerical</u>                                 | Composition (                                         | <u>%)</u>                                        |
|-----------------------------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|
|                                         | Neomys i                                            | s mercedis                                       | Crangon fran                                          | ciscorum                                         |
| Food<br>Item                            | Estuary-wide<br>Distribution<br>June 1980<br>(n=54) | Seasonal<br>Distribution<br>Youngs Bay<br>(n=25) | Estuary-wide<br>Distribution<br>August 1980<br>(n=41) | Seasonal<br>Distribution<br>Youngs Bay<br>(n=39) |
| Diatoms                                 | 12.5                                                | ÷ 3.7                                            | 21.4                                                  | 62.6                                             |
| Nematodes                               | •••                                                 | ***. *                                           | •••                                                   | 0.7                                              |
| Rotifers                                | 36.8                                                | 1.9                                              | •••                                                   | 0.1                                              |
| Polychaete Annelids;<br>Nereidae        | •••                                                 |                                                  | 3.3                                                   | 1.9                                              |
| Cladocerans                             | 0.4                                                 | 0.6                                              | 0.6                                                   | 0.1                                              |
| <u>Sida crystallina</u>                 | 0.4                                                 | • • •                                            | •••                                                   | •••                                              |
| <u>Daphnia</u> sp.                      | 0.4                                                 | •••                                              |                                                       | •••                                              |
| <u>Bosmina</u> sp.                      | 17.6                                                | 5.0                                              | 0.6                                                   | 0.4                                              |
| Chydoridae                              | 0.4                                                 |                                                  |                                                       |                                                  |
| <u>Leydigia</u><br>quadrangularis       | 0.4                                                 | •••                                              | •••                                                   |                                                  |
| Ostracods                               | 3.1                                                 | •••                                              | 0.1                                                   |                                                  |
| Calanoid Copepods                       |                                                     |                                                  |                                                       |                                                  |
| <u>Eurytemora</u> affini                | <u>s</u> 2.6                                        | 3.7                                              | •••                                                   | 9.1                                              |
| Harpacticoid Copepods                   | 0.7                                                 | •••                                              | 1.0                                                   | •••                                              |
| Scottolana canade                       | <u>ensis</u> 9.6                                    | 37.9                                             | 61.0                                                  | 22.7                                             |
| Ectinosomidae                           | 3.3                                                 | 41.6                                             | 1.0                                                   | 1.3                                              |
| Tachidiae                               | 0.4                                                 | • • •                                            | • • •                                                 | •••                                              |
| <u>Tachidius</u><br><u>triangularis</u> | 0.4                                                 | •••                                              | 0.1                                                   | 0.3                                              |
| Cyclopoid Copepods                      | • • •                                               | 1.2                                              | • • •                                                 | •••                                              |
| <u>Cyclops</u> sp.                      | 1.1                                                 | • • •                                            | •••                                                   |                                                  |
| <u>C. bicuspidatus</u>                  | 1.1                                                 | 1.9                                              | 3.7                                                   | • • •                                            |
| <u>C. vernalis</u>                      | 1.8                                                 | 2.5                                              | 4.7                                                   | •••                                              |
| Barnacle cypris                         | •••                                                 | •••                                              | 1.0                                                   | • • •                                            |
| Mysidacea                               | ••••                                                |                                                  | 0.3                                                   | •••                                              |
| Gammarid Amphipods                      | 1.1                                                 | •••                                              | •••                                                   |                                                  |
| Corophium sp.                           | •••                                                 | •••                                              | •••                                                   | 0.3                                              |
| <u>C. salmonis</u>                      | •••                                                 | • • •                                            | 0.4                                                   | 0.1                                              |
| Eogammarus<br>confervicolus             | 0.4                                                 |                                                  | 0.1                                                   | •••                                              |
| <u>Eohaustorius</u> sp.<br>Decapods     | 0.1                                                 | •••                                              | •••                                                   | •••                                              |
| <u>Crangon</u><br>franciscorum          | •••                                                 | •••                                              | 0.6                                                   | 0.1                                              |
| Plant Detritus                          | 0.4                                                 | •••                                              | •••                                                   | •••                                              |

Table 5. Numerical composition (%) of food organisms consumed by <u>Neomysis mercedis</u> and <u>Crangon franciscorum</u> in the Columbia River Estuary, March 1980 - July 1981. n = number of stomachs examined.

.

## 4. DISCUSSION

## 4.1 PHYSICAL AND ECOLOGICAL INFLUENCES UPON STRUCTURE AND STANDING STOCK OF EPIBENTHIC ZOOPLANKTON ASSEMBLAGES

Seasonal patterns in the standing stock of epibenthic zooplankton coincide with two major hydrologic characteristics of the estuarine mixing zone of the estuary, the maximum intrusion of saline water and the upstream boundary of the turbidity maximum zone or "null zone". Maximum salinity intrusion during high flow seasons is probably only 20 km to 25 km from the mouth of the estuary but may extend as far as 45 km landward during the summer-fall low flow season (Jay 1982). Correspondingly, the upstream boundary of the maximum turbidity zone probably shifts from 14 km to 15 km from the mouth during high flow seasons to a position 19 km to 23 km from the mouth of the estuary during low flow seasons (Simenstad et al. 1984). Thus, the distribution of specific taxa can be related to their preadapted salinity tolerances but reproductive populations are probably maintained (despite the effects of net seaward transport) physically by entrainment within the turbidity maximum and landward currents along the bottom. Production of these populations is also probably enhanced by the entrainment and prolonged cycling of detritus particles within the same region, although CREDDP produced no data on detritus distribution and composition with which to test this hypothesis.

In addition to supporting the influence of salinity intrusion, the change from homogeneous to heterogeneous taxa groups between high and low flow seasons also indicates the effect of seasonal variation in the strength or presence/absence of water column stratification. Although dependent upon tidal conditions, the water column tends to be more strongly stratified more often during high flow seasons than during low flow seasons, when neap-spring tidal forces extend much further up the estuary. As a result, the more thorough mixing during the summer-fall low flow season would transport and integrate fluvial, euryhaline, and euhaline taxa within the same epibenthic regions of the estuary. Despite this physically dynamic system, euryhaline taxa such as Eurytemora affinis are able to sustain high population densities within the central, estuarine mixing zone of the estuary, probably through active vertical migration (Wooldridge and Erasmus 1980).

## 4.2 PHYSICAL AND ECOLOGICAL INFLUENCES UPON DISTRIBUTION AND STANDING STOCK OF MOTILE MACROINVERTEBRATES

As a euryhaline species, the distribution and standing stock of <u>Crangon franciscorum</u> probably relates to the increased salinity intrusion during the summer-fall low flow season but is also coincident with the distribution shift in their principal prey resources, the epibenthic zooplankton. Epibenthic-feeding fishes, which prey upon both epibenthic zooplankton and motile macroinvertebrates, and marine mammals (seals and sea lions) also expand their distributions further up the estuary in response to these dynamic shifts in prey resource concentrations (Haertel and Osterberg 1967; Beach et al. 1981; National Marine Fisheries Service 1984). Consequently, the distribution and standing stock of <u>Crangon</u> franciscorum may be determined by the combined effects of physical forces, population dynamics, and trophic interactions with prey and predators. The same influences undoubtedly affect the distribution and abundance of the less motile <u>Neomysis</u> <u>mercedis</u>, although physical effects may be predominant.

Although the 1980-1981 CREDDP data does not show Dungeness crab to occupy a significant portion of the Columbia River Estuary, there are other data to indicate that their distribution at other times may be somewhat more landward than reported herein. Haertel and Osterberg (1967) described Dungeness crab as occupying euhaline to mesohaline Durkin (1975) described crab abundance during the demersal habitats. spring and summer to be relatively high at the landward margin of the plume and ocean zone in the channel adjacent to Clatsop Spit, but they were also collected in low numbers in the channel just downstream of Astoria. Durkin et al. (1981) also provided data in support of Dungeness crab distribution extending almost 20 km up the estuary (to Astoria) in channel bottom habitats. However, crab densities were mesurable reduced in May as compared to November collections. In contrast, densities 5 km closer to the mouth (in the vicinity of Tansy Point, Figure 2) were higher during both October and May and numerically comparable to densities from colections at the mouth of the estuary. Thus, Dungeness crab in the Columbia River Estuary may be relatively confined to the euhaline waters of the channel bottom habitats and to shift the center of their estuarine density distribution with the tidal intrusion of oceanic water and the movement of the turbidity maximum zone.

Compared to other, more marine estuaries in the region, however, the strong and variable freshwater dominance in the Columbia River appa rently limits the horizontal and depth incursion of Estuary Dungeness crab. Armstrong et al. (1981) indicated that Dungeness crabs occurred in densities as high as  $0.81 \text{ m}^{-2}$  at the mouth of Grays Harbor but they also occurred as far as 25 km inside the estuary, although at steadily decreasing densities. Densities at the most landward trawl sampling station, where the mean salinity still averaged 20 °/00, averaged approximately 0.01 individuals  $m^{-2}$ . Also in contrast to the Columbia River Estuary, Dungeness crabs were abundant on tidal flats This suggests that the freshwater throughout much of Grays Harbor. dominance of most of the tidal flat habitats in the Columbia River Estuary also reduces the distribution and influence of Dungeness crab in these habitats.

Probably the strongest indication of the less-important role of Dungeness crab in the Columbia River Estuary compared to more saline estuaries is the complete lack of any crab larvae in the extensive pelagic zooplankton collections conducted by Haertel and Osterberg (1967) and by CREDDP during the same period (English 1984). In contrast, both Armstrong et al. (1981) and Simenstad and Eggers (1981) reported high densities of <u>C. magister</u> megalopae as far as 20 km landward from the mouth of Grays Harbor during the month of April. 4.3 FOOD WEB RELATIONSHIPS

Although we have no direct evidence, standing stock distributions of epibenthic zooplankton would suggest that the null zone region of the estuarine mixing zone is a locale of entrainment and concentration of detritus particles which supports zooplankters in the benthic boundary layer. Whether allochthonous organic matter, phytoplankton cells which have sunk from the water column, or benthic diatom cells which have been swept off the tidal flats, this detritus resource may be retained within the null zone for time periods longer than the expected flushing time of the estuary as a whole.

The high standing stock of epibenthic zooplankton assemblages on tidal flats in the estuarine mixing zone also suggests that either: (1) detrital particles are advected laterally along the benthic boundary layer from the sublittoral channel habitat; (2) the rate of particle deposition from surface waters over tidal flats (sinking?) is also high; and/or, (3) benthic primary production is enhanced in the intertidal flat habitat in this region. Unfortunately, there are few or no data to elucidate these questions.

Whatever the sources of and factors producing enhanced production of epibenthic zooplankton in the estuarine mixing zone, motile macroinvertebrates and other secondary consumers utilize these assemblages extensively (Figure 18). It is probable that, in addition to physiologically-defined salinity tolerances, the distribution and standing stock of <u>Crangon</u> are strongly influenced by the dynamics of their epibenthic zooplankton prey resources.

4.4 ESTUARINE PRODUCTION OF EPIBENTHIC ZOOPLANKTON AND MOTILE MACROINVERTEBRATES

Direct, accurate estimation of production (biomass or carbon generated per unit ot time) of crustaceans requires complicated cohort analyses and number of rigid assumptions (such as insignificant immigration and emigration from a unit population) (Winberg 1971). The CREDDP sampling design for epibenthic zooplankton and motile macroinvertebrates did not permit this approach, in part due to the low sampling frequency and the tremendous flux of organisms into, out of, and throughout the For the sake of comparisons, however, first order approximaestuary. tions can be generated using production/biomass (P/B) ratios from the literature for the same or similar faunal assemblages. Based upon the combined meiofauna and small macrofauna composition of the epibenthic zooplankton assemblages, an annual P/B ratio of 9.0 was adopted (McIntyre 1969; Conover 1974; Sibert 1979); an annual P/B ratio of 8.0 was adopted for motile macroinvertebrates based on Kuipers and Dapper (1981).

Calculating production by apportioning the P/B ratio by standing crop estimates over the monthly and quarterly sampling intervals, it was estimated that epibenthic zooplankton in the estuary produce approximately 64.7 mt C yr<sup>-1</sup> and motile macroinvertebrates produce 22.0 mt C yr<sup>-1</sup>. For the epibenthic zooplankton, approximately 39% of the production occurred in tidal flats, 36% in demersal slope, and 25% in channel



Figure 18. Qualitative food web relationships involving epibenthic zooplankton and motile macroinvertebrates in the Columbia River Estuary.

bottom habitats. Only 20% of the motile macroinvertebrate production occurred on tidal flats, while 41% and 39% occurred in demersal slope and channel bottom habitats, respectively.

## 5. CONCLUSIONS AND RECOMMENDATIONS

In conclusion, epibenthic zooplankton in the Columbia River Estuary are spatially and seasonally structured by circulation, salinity intrusion, and null zone processes while motile macroinvertebrate assemblages appear to be structured by salinity intrusion and the distribution of their principal prey resources, the epibenthic zooplankters. In addition, the overlying effect of fish and marine mammal predators upon the motile macroinvertebrates undoubtedly influences the ultimate production of these epifauna.

Most of our conclusions regarding factors influencing the structure, distribution, and standing stock of epibenthic organisms in the Columbia River Estuary, however, are based upon conjecture or, at best, weak data sets. For example, despite the potentially important role of detritus in supporting the standing stock of epibenthic zooplankton in the estuary, we know little of the sources of detritus input into the estuary or of the processes which make it available to epifauna. IIndoubtedly, the historic changes in river hydrology as it affects estuarine circulation and primary production have altered both the sources and fates of detritus in the estuary. Similarly, changes in wetland (i.e. swamp and marsh) habitat over the past century have probably altered the composition and magnitude of endogenous detritus production. Until we have a better understanding of the functional relationships between the detritus resource and detritivores such as epibenthic zooplankton we will be limited in our ability to predict or evaluate further changes in the estuarine ecosystem. Considerably more research needs to be focused upon the sources, flow, and fate of organic detritus within the estuary and upon the heterotrophic food web processes which are based upon it.

However, epibenthic zooplankton in the Columbia River Estuary have been classified as detritivores simply on the basis of information from the scientific literature. Such information is often of questionable applicability to the Columbia River estuarine ecosystem, especially given the differences between that system and those which have been studied. More direct, specific research is needed on the actual food resources utilized by the principal endemic zooplankters. The extent of utilization of heterotrophic versus autotrophic food resources determines to a great extent the potential impact of any modification of circulation or estuarine habitats.

Although circulation processes characterizing the turbidity maximum have certainly been one important aspect of the CREDDP Circulation, Sedimentation, and Simulation work units results, we still are relatively limited in our understanding of the spatial and temporal dynamics of the null zone. This is particularly true because most of our information on circulation, including velocities, salinities, and mixing, typically originate from measurements obtained above (i.e. >1 m) the benthic boundary layer. More detailed, finer resolution research is needed to better define actual laminar flow regimes, transport, and mixing characteristics of this "very-near" bottom layer of the turbidity maximum region of the estuary.

Our research on epifauna has also been basically descriptive with interpretations of functional mechanisms based upon correlations among observed patterns of distribution and standing stock and other physical and biological characteristics. More mechanistic studies of the factors influencing relative availability of epibenthic zooplankton to sampling are needed. Much of the variation inherent in our data probably originated from finer scale cycles (e.g. diel, tidal) which could not be included in our sampling design. These factors, which may be important to either active or passive movements of epifauna, need to be further investigated in order to place the existing CREDDP data in context as well as to further elucidate the mechanisms which influence epifauna distribution.

## LITERATURE CITED

- Armstrong, D. A.; Stevens, B. G.; Hoeman, J. C. 1981. Distribution and abundance of Dungeness crab and crangon shrimp, and dredgingrelated mortality of invertebrates and fish in Grays Harbor, Washington. Tech. Rep. to Wash. Dep. Fish. and U. S. Army Corps Engineers, Contract DACW67-80-C-0086, School Fish., Univ. Wash., Seattle, WA. 349 pp.
- Beach, R. J.; Geiger A. C.; Jefferies S. C.; Treacy, S. D. 1981. Marine mammal - fishery interactions on the Columbia River and adjacent waters, 1981. Second ann. rep., Nov. 1, 1980 - Nov. 1, 1981. Wash. State Game Dep., Olympia, WA. 186 pp.
- Beyer, F. 1958. A new, bottom-living trachymedusae from the Oslo fjord. Nytt. Mag. Zool. 6:121-143.
- Bossanyi, J. 1957. A preliminary survey of the small natant fauna in the vicinity of the sea floor off Blyth, Northumberland. J. Anim. Ecol. 26:353-368.
- Boysen, H. O. 1975. Seasonal variations in abundance of hyperbenthic animals in the Kiel Bight. Merentutkimuslait. Julk. 239:206-212.
- Bray, J. R.; Curtis, J. T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325-349.
- Brown, T. J.; Sibert, J. R. 1977. Food of some benthic harpacticoid copepods. J. Fish. Res. Board Can. 34:1028-1031.
- Clifford, H. T.; Stephenson, W. 1975. An introduction to numerical classification. Academic Press.
- Cordell, J. R.; Simenstad, C. A. 1981a. Community structure and standing stock of epibenthic zooplankton at Moon Island. Pp. 128-145 in C. A. Simenstad and D. M. Eggers (eds.), Juvenile salmonid and baitfish distribution, abundance, and prey resources in selected areas of Grays Harbor, Washington. Final Rep., FRI-UW-8116 to Seattle Dist., U.S. Army Corps Engineer, Fish. Res. Inst., Coll. Fish., Univ. Wash., Seattle, WA. 205 pp.
- Cordell, J. R.; Simenstad, C. A. 1981b. Community structure and standing stock of epibenthic zooplankton at five sites in Grays Harbor, Washington. Final Rep. FRI-UW-8120 to Seattle Dist., U.S. Army Corps Engineer, Fish. Res. Inst., Coll. Fish., Univ. Wash., Seattle, WA. 28 pp. + appendices.
- Davis, J. S. 1978. Diel activity of benthic crustaceans in the Columbia River estuary. M.S. Thesis, School Oceanography, Oregon State Univ., Corvallis, OR.

- Durkin, J. T. 1975. An investigation of fish and decapod shellfish found at four dredge material disposal sites and two dredge sites adjacent to the mouth of the Columbia River. Compl. Rep. to U.S. Army Corps Engineer, Portland Dist., and Columbia Fish. Prog. Office, Natl. Mar. Fish. Serv., NOAA-Natl. Mar. Fish. Serv., NW Fish. Center, Seattle, WA. 29 pp.
- Durkin, T. J.; Lipovsky, S. J.; Snyder, G. R.; Shelton, J. M. 1976. Changes in epibenthic fish and invertebrates from propeller agitation dredging. Sect. I in Impact of Propeller Agitation Dredging on Fish and Invertebrates at Chinook Channel in the Columbia River Estuary. Rep. to U.S. Army Corps Engineers, N. Pac. Div., NOAA Natl. Mar. Fish. Serv., NW Alaska Fish. Center, Seattle, WA. 57 pp.
- Durkin, T. J.; Lipovsky, S. J. 1977. Aquatic disposal field investigations, Columbia River disposal site, Oregon. Appendix E in Demersal Fish and Decapod Shellfish Studies, Tech. Rep. D-77-30, U.S. Army Corps Engineer., Waterways Exp. Station, Dredged Material Prog., Vicksburg, MI.
- Durkin, T. J.; Lipovsky, S. J.; McConnell, R. J. 1979. Biological impact of a flowline disposal project project near Pillar Rock in the Columbia River Estuary. Unpubl. rep., Coastal Zone Estuarine Studies, NOAA Natl. Mar. Fish. Serv., NW Alaska Fish Cent., Seattle, WA.
- Durkin, J. T.; Coley, T. C.; Verner, K.; Emmett, R. L. 1981. An aquatic species evaluation at four self scouring sites in the Columbia River Estuary. Final Rep. to U.S. Army Corps Engineers, Contract DACW57-79-F-0145, NOAA-Natl. Mar. Fish. Serv., NW Alaska Fish. Center, Seattle, WA. 46 pp.
- English, T. S. 1984. Zooplankton and larval fish of the Columbia River Estuary. Final Rep., Columbia River Estuary Data Development Corporation, Astoria, OR.
- Feller, R. J.; Kaczynski, V. W. 1975. Size selective predation by juvenile chum salmon (<u>Oncorhynchus keta</u>) on epibenthic prey in Puget Sound. J. Fish. Board Can. 32:1419-1430.
- Gauch, H. G., Jr. 1982. Multivariate analysis in community ecology. Cambridge Univ. Press, Cambridge. 298 pp.
- Good, J. W. 1977. Columbia River Estuary plankton. Pp. 304-1 to 304l2 in M. H. Seaman (ed.), Columbia River Estuary inventory of physical, biological and cultural characteristics. Col. Riv. Est. Study Task force, Astoria, OR.
- Haertel, L.; Osterberg, C. 1967. Ecology of zooplankton, benthos and fishes in the Columbia River Estuary. Ecology 48:459-472.
- Heinle, D. R.; Flemer, D. A. 1975. Carbon requirements of a population of the estuarine copepod <u>Eurytemora</u> affinis. Mar. Biol. 31:235-247.

- Heinle, D. R.; Harris, R. P.; Ustach, J. F.; Flemer, D. A. 1977. Detritus as food for estuarine copepods. Mar. Biol. 40:341-353.
- Hesthagen, I. 1973. Diurnal and seasonal variations in the near-bottom fauna-the hyperbenthos-in one of the deeper channels of the Kieler Bucht (western Baltic). Kieler Meeresforsch. 29:116-140.
- Hicks, G. R. F.; Coull, B. C. 1983. The ecology of marine meiobenthic harpacticoid copepods. Ocean. Mar. Biol. Ann. Rev. 21:67-175.
- Hickson, R. E.; Rudolf, F. W. 1951. History of the Columbia River jetties. Pp. 283-298 in J. W. Johnson (ed.), First Pac. Conf. Coast. Engineer.
- Higley, D.; Holton, R. 1975. Biological baseline data, Youngs Bay, Oregon. Final rep. 75-6 to Alumax Pacific Aluminum Corp., Oregon State Univ., Corvallis, OR. 91 pp.
- Hulings, N. C.; Gray, J. S. 1971. A manual for the study of meiofauna. Smithsonian Contrib. Zool. 78, Smithsonian Inst. Press, Washington, D.C. 84 pp.
- Israel, H. R. 1936. A contribution toward the life histories of two California shrimps, <u>Crago</u> <u>franciscorum</u> (Stimpson) and <u>Crago</u> <u>nigricauda</u> (Stimpson), Calif. Dept. Fish Game, Bull. 46:1-28.
- Jay, D. 1982. Columbia River Estuary salinity distribution. Rep. to U.S. Army Corps Engineers, Portland Dist., Geophysics Dept., Univ. Wash., Seattle, WA. 113 pp.
- Kost, A. L. B.; Knight; A. W. 1975. The food of <u>Neomysis</u> mercedis Holmes in the Sacramento-San Joaquin estuary. Calif. Fish and Game 61:35-46.
- Krygier, E. E.; Horton, H. F. 1975. Distribution, reproduction, and growth of <u>Crangon nigricauda</u> and <u>Crangon franciscorum</u> in Yaquina Bay, Oregon. Northwest Sci. 49:216-240.
- Lasker, R.; Wells, J. B. J.; McIntyre, A. D. 1970. Growth, reproduction, respiration and carbon utilization of the sand dwelling harpacticoid copepod, <u>Asellopsis intermedia</u>. J. Mar. Bio. Assoc. U.K. 50:147-160.
- Levings, C. D. 1980a. The biology and energetics of <u>Eoganmarus</u> <u>confervicolus</u> (Stimpson) (Amphipoda, Anisogammaridae) at the Squamish River estuary. B. C. Can. J. Zool. 58:1652-1663.
- Levings, C. D. 1980b. Vertical distribution and abundance of epibenthos and macrozooplankton in the lower Fraser River estuary. Canadian Data Rep. Fish. Aquat. Sci. 241, West Vancouver Laboratory, West Vancouver, B.C., 59 pp.

- Levings, C. D.; Chang, B. D. 1977. A preliminary study of the influence of current velocities on estuarine benthos, especially <u>Aniso-</u> <u>gammarus confervicolus</u>, in the Fraser River estuary. Fish. Res. Bd. Canada Manuscript Rep. Ser. 1424, Pac. Environ. Inst., West Vancouver, B.C. 50 pp.
- Lockett, J. B. 1963. Phenomena affecting improvement of the lower Columbia River estuary and entrance. Rep. prep. Subcomm. Sed., Fed. Interagency Sed. Conf., I.C.W.R., Jackson, Mississippi.
- Lockett, J. B. 1967. Sediment transport and diffusion: Columbia estuary and entrance. J. Waterways Harbors Div., A.S.C.E. 93:167-175.

- Mercier, H. 1984. Index to CREDDP data. Astoria, OR: Columbia River Estuary Data Development Program.
- National Marine Fisheries Service. 1984. CREDDP Fish Work Unit. Fin. rep. to Col. Riv. Est. Data Dev. Prog., Natl. Mar. Fish. Serv., NW Alaska Fish. Cent., Seattle, WA.
- Neal, V. T. 1972. Physical aspects of the Columbia River and its estuary. Pp. 19-40 in A. T. Pruter and D. L. Alverson (eds.), The Columbia River Estuary and Adjacent Ocean Waters, Univ. Wash. Press, Seattle, WA. 868 pp.
- Pacific Northwest River Basins Commission. 1979. The Columbia River Estuary Data Development Program plan of study. Pac. NW Riv. Basins Comm., Vancouver, WA. 40 pp. + appendices.
- Pacific Northwest River Basins Commission. 1980a. Columbia River Estuary Data Development Program 1979-1980 annual report. Vol. 1 & 2. Pac. NW Riv. Basins Comm., Vancouver, WA.
- Pacific Northwest River Basins Commission. 1980b. Procedures Manual. Columbia River Estuary Data Development Program.
- Reiper, M. 1978. Bacteria as food for marine harpacticoid copepods. Mar. Biol. 45:337-345.
- Sibert, J. R. 1981. Intertidal hyperbenthic populations in the Nanaimo estuary. Mar. Biol. 64:259-265.
- Simenstad, C. A.; Miller, B. S.; Nyblade, C. F.; Thornburgh, K.; Bledsoe, L. J. 1979. Food web relationships of northern Puget Sound and the Strait of Juan de Fuca: A synthesis of the available knowledge. EPA DOC Res. Rep. EPA-600/7-79-259. 335 pp.
- Simenstad, C. A.; Eggers, D. M. (eds.) 1981. Juvenile salmonid and baitfish distribution, abundance, and prey resources in selected areas of Grays Harbor, Washington. Final Rep. to U.S. Army Corps Engineers, Seattle Dist., Fish. Res. Inst., Coll. Fish., Univ. Wash., Seattle, WA. FRI-UW-8116. 205 pp.

- Simenstad, C. A.; Salo, E. O. 1982. Foraging success as a determinant of estuarine and nearshore carrying capacity of juvenile chum salmon (<u>Oncorhynchus keta</u>) in Hood Canal, Washington. Pp. 21-37 in B. R. Melteff and R. A. Nevé (eds.), Proc. North Pac. Aquaculture Symp., 18-27 August 1980. Anchorage, Alaska and Newport, Oregon. Alaska Sea Grant Rep. 82-2. Univ. Alaska, Fairbanks, AK. 372 pp.
- Simenstad, C. A.; Cordell, J. R. In press. Structural dynamics of epibenthic zooplankton in the Columbia River delta. Proc. XXII Congress Internat. Assoc. Limnol. (SIL), Lyon, FR, August 21-28, 1983.
- Simenstad, C. A.; Jay, D. A.; Nehlsen, W.; McIntire, C. D.; Sherwood, C.; Small, L. F. 1984. Dynamics of the Columbia River estuarine ecosystem. Columbia River Estuary Data Development Program, Astoria, OR.
- Sims, C. W. 1975. Food of chum salmon fry in brackish and freshwater areas of the Columbia River Estuary. Unpubl. manuscript, NOAA, Natl. Mar. Fish. Serv., NW Alaska Fish. Cent., Seattle, WA. 13 pp.
- Thomas, D. W. 1983. Changes in Columbia River Estuary habitat types over the past century. Rep. Col. Riv. Est. Data Dev. Prog., Col. Riv. Est. Study Taskforce, Astoria, OR. 51 pp + appendices & maps.
- Vanden Berghe, W.; M. Bergmans. 1981. Differential food preferences in three co-occurring species of <u>Tisbe</u> (Copepoda, Harpacticoida). Mar. Ecol.-Prog. Ser. 4:213-219.
- Williams, G. T. 1983. Distribution and relative abundance of major epibenthic crustacea in the Columbia River Estuary. M.S. thesis, Coll. Ocean Fish. Sci., Univ. Washington, Seattle, WA. 98 pp.
- Wooldridge, T.; Erasmus, T. 1980. Utilization of tidal currents by estuarine zooplankton. Est. Coast. Mar. Sci. 11:107-114.



# APPENDIX A. Institutional Acronyms

## APPENDIX A. Institutional Acronyms

CREDDP Columbia River Estuary Data Development Program; Astoria, OR

- CREST Columbia River Estuary Study Taskforce, Astoria, OR
- FRI Fisheries Research Institute; College of Ocean and Fishery Sciences, University of Washington, Seattle, WA
- NMFS National Marine Fisheries Service; Hammond Lab and Northwest and Alaska Fisheries Center, Seattle, WA
- NODC National Oceanographic Data Center; Environmental Data Service, National Oceanic and Atmospheric Administration, Washington, D.C.
- OSU Oregon State University; Corvallis, OR
- PNRBC Pacific Northwest River Basins Commission

UW University of Washington; Seattle, WA

APPENDIX B. Summary of CREDDP epibenthic collections by 0.1-m<sup>2</sup> epibenthic suction pump and 0.5-m epibenthic sled in the Columbia River Estuary, March 1980 - July 1981.

.

.

····- - ---
SUNNARY TABLES PACE 1

. .. . . .

· · · · · · · ·

----

- - - - - - -

- - -

----

.

-

----

• •• • •

.

٠

.

.

EPIDUNTHIC PLANKTON AUALYSIS

•

.

1

2

\*\*

.

.

.

• GAANU SUMMAPY •

----

| FROM COLLECTIONSI | FILLIA     | STATION | SAMPLE     |
|-------------------|------------|---------|------------|
|                   | 104625     | 14001   | F L        |
|                   | 804.23     | 14001   | 6.2        |
|                   | 80MR22     | 14003   | ĒĨ         |
|                   | 80/1R25    | 14033   | ξŻ         |
|                   | 01925      | 14044   | εī         |
|                   | 80n x 25   | 14004   | ΕŻ         |
|                   | 80 49 23   | 14086   | E 1        |
|                   | 80MK 25    | 14000   | £ ?        |
|                   | 80KP26     | 14007   | E 1        |
|                   | duMK26     | 1+007   | E 2        |
|                   | 00 MH 26   | 14010   | F 1        |
|                   | Bunk26     | 14410   | E 2        |
|                   | #0M925     | 14011   | é l        |
|                   | 80 AP 24   | 14011   | E 2        |
|                   | 80 MP 24   | 14012   | E 1        |
|                   | 600925     | 14012   | E Z        |
|                   | HOMPZO     | 14013   | £ 1        |
|                   | BOMR26     | 14013   | EZ         |
|                   | BOAP22     | 14001   | E I        |
|                   | SUAPZ2     | 14001   | EZ         |
|                   | BUAPZZ     | 14003   |            |
|                   | dUAP22     | 14003   | 14         |
|                   | BUAP23     | 14004   |            |
|                   | 804823     | 14004   | 2 2        |
|                   | 804P23     | 14000   | 6 1        |
|                   | 004723     | 16007   |            |
|                   | 804-22     | 14007   | 23         |
|                   | 864P21     | 14010   | ÷ 1        |
|                   | 804921     | 14010   | i i        |
|                   | d04P21     | 14011   | ĒĪ         |
|                   | BOAP21     | 19011   | ÊŻ         |
|                   | 40±P21     | 14014   | Εl         |
|                   | 80AP21     | 14012   | ε 2        |
|                   | BOAP23     | 14013   | ε 1        |
|                   | 804921     | 14013   | 62         |
|                   | A01023     | 14015   | E 1        |
|                   | 604P23     | 19015   | £ 2        |
|                   | 40 MY LA   | 14001   | <b>E</b> 1 |
|                   | 804110     | 14031   | £ 2        |
|                   | 40#41P     | 14003   | E 1        |
|                   | AGHYLL     | 72003   | <u>£</u> 2 |
|                   | 80 KY1 A   | 1-004   | F 1        |
|                   | 804716     | 14004   | ΕŽ         |
|                   | 405136     | 14006   | E 1        |
|                   | 40 H Y 1 P | 14000   | EZ         |
|                   | 504410     | 14037   | FI         |
|                   | 90541D     | 19447   | C Z        |
|                   | 703717     | 14010   | 4 1        |
|                   | 202411     | tento   | L :        |

**B-1** 

Epibenthic Pump Collections

;

# EPIBENTHIC PLANKTON ANALYSIS

:

.

...

•

-

.

 $\Box$ .  $\Box$ 

----

-- - ----

----

- ----

\_\_\_\_

-

- ----

- - -----

····

·····

× 1

,

. . . .

----

A second statement of the second statement

----

----

.....

.

. . .

- ----

-----

.

-

· · · · · ·

------

STTF TABLE, PAGE 2

. . .

......

· -

. . .

.

• .

- - - -

.

. ... .

•••

.

- -

\_

-

.

-

| FRUM | COLLECTIONS | FILFID     | STATION | SAMPLE     |
|------|-------------|------------|---------|------------|
|      |             |            |         |            |
|      |             | 904110     | 14011   | F 1        |
|      |             | 00/110     | 14011   |            |
|      |             | PONT17     | 14012   | Ę Ļ        |
|      |             | 804717     | 14012   | E E        |
|      |             | 80NY17     | 14013   |            |
|      |             | 804717     | 16015   | £ 2        |
|      |             | NO MY17    | 14015   | 6 9        |
|      |             | 80 ( 12 1  | 14 101  | 6 A<br>F 1 |
|      |             | 60 JN 21   | 14001   | F 2        |
|      |             | POJN21     | 14003   | E I        |
|      |             | 80 JN21    | 1400 1  | F Z        |
|      |             | 80 J N 2 1 | 14004   | ĒĪ         |
|      |             | 0 JN21     | 14004   | Ēī         |
|      |             | AD JN21    | 14004   | E 1        |
|      |             | 80 JN21    | 14004   | ε Ζ        |
|      |             | HOJN24     | 14006   | E 1        |
|      |             | 80 JN24    | 14006   | E 2        |
|      |             | AOJN24     | 14007   | E 1        |
|      |             | 80 J N 24  | 14007   | E 2        |
|      |             | POJN22     | 14910   | E 1        |
|      |             | BOJNZZ     | 14010   | E 2 .      |
|      |             | HOJNZZ     | 14011   | E 1        |
|      |             | 60 JN22    | 14011   | 1 2        |
|      |             | 40 JN27    | 14012   | E I<br>C 3 |
|      |             | 80 1822    | 14012   | 5 5        |
|      |             | ROJN22     | 14013   |            |
|      |             | 804N22     | 14014   | Fi         |
|      |             | ROJN22     | 14014   | F 2        |
|      |             | BOJNZZ     | 14015   | εĩ         |
|      |             | 55ML 08    | 14015   | E 2        |
|      |             | 80JY13     | 14001   | E 1        |
|      |             | 90JA13     | 14001   | F 2        |
|      |             | ROJY13     | 14003   | E 1        |
|      |             | 90 JA13    | 14003   | ΕŻ         |
|      |             | 00JY13     | L4004   | E 1        |
|      |             | 001413     | 14004   | E 2        |
|      |             | 80JY12     | 14006   | E 1        |
|      |             | POJTIZ     | 14096   | 6 2        |
|      |             | 401112     | 14007   | E 1        |
|      |             | 60 J T J   | 14007   | 5 2        |
|      |             | 401413     | 14010   |            |
|      |             | 804712     | 14010   | C C C      |
|      |             | 90111      | 14011   | £ 2        |
|      |             | ROJYLZ     | 14012   | ě i        |
|      |             | 40 J Y 1 Z | 14012   | īż         |
|      |             | 00JY12     | 14013   | εī         |
|      |             | AO JY L2   | 14011   | FZ         |
|      |             | 80JY12     | 14014   | Ε1         |
|      |             | POJY12     | 14014   | 62         |
|      |             | 10.14.15   | 14015   | 6.1        |
|      |             | ROJYLE     | 14015   | E 2        |

- ---

# LPIBLOTHIC PLANKTON ANALYSIS

r dua

.

.

• · •

.

| CUECTOFIUNSE | ATTE D     | STATION | LAMPI E |
|--------------|------------|---------|---------|
|              | HOALLIN    | 16001   | r 1     |
|              | 104111     | 14041   | Èż      |
|              | 804016     | 1 00 1  | E 1     |
|              | BOAUlu     | 14003   | E 2     |
|              | HOAU17     | 14004   | E 1     |
|              | 80AU17     | 14004   | ΕZ      |
|              | 80AU17     | 14000   | E 1     |
|              | 60 AUL 7   | 14000   | E 2     |
|              | BOAULO     | 14097   | E 1     |
|              | BUAILO     | 14007   | E 2     |
|              | 00AU16     | 14010   | E 1     |
|              | ROVALA     | 14010   | 6 2     |
|              | BUAULU     | 14011   | 61      |
|              | BOALLD     | 14011   | E Z     |
|              | HOAU19     | 14012   |         |
|              | 101010     | 14012   | 5 4     |
|              | BOAULA     | 14013   | 2.7     |
|              | DUAULO     | 14013   | 6 6     |
|              |            | 14014   | 2 2     |
|              | AUTRIC     | 16015   |         |
|              | 304010     | 16015   | ĒŻ      |
|              | 801017     | 16001   | ĒĪ      |
|              | 800017     | 14001   | ĒŽ      |
|              | 000017     | 14003   | E 1     |
|              | 800C17     | 14003   | E 2     |
|              | 800014     | 14004   | E 1     |
|              | 600C18     | 14004   | ΕZ      |
|              | 60/0017    | 14000   | ε 1     |
|              | 8QUC17     | 14000   | E 2     |
|              | 800017     | 14007   | εı      |
|              | 800017     | 14007   | E 2     |
|              | 600018     | 1+010   | E 1     |
| -            | 80 DC 18   | 14010   | E 2     |
|              | 800017     | 14011   | E 1     |
|              | 660017     | 14011   | 1.2     |
|              | Boncir     | 14012   |         |
|              | 000017     | 14012   | E 2     |
|              | 00.1C17    | 16011   | 6 3     |
|              | 400014     | 14015   |         |
|              | 400018     | 14014   | 6 6     |
|              | 800010     | 14015   | 2.1     |
|              | 800017     | 14015   |         |
|              | 41 1427    | 14001   | è ĩ     |
|              | 813427     | 14001   | ĔŻ      |
|              | 81 JA27    | 14003   | Ēī      |
|              | 61 JA27    | 14003   | 6.2     |
|              | 81 JA28    | 14004   | ĒĨ      |
|              | 01 JA28    | 14004   | E 2     |
|              | ALJAZA     | 14006   | €ī      |
|              | 01 J A 2 8 | 14036   | έZ      |
|              | HIJAZE     | 1+007   | é 1     |
|              | 81JA26     | 14907   | L Z     |

#### STEP TABLER PAGE 3



в-3

× \*

. .

- ----

. \_

- ----

- . .

- --

. . .

. ... -

--

. .

----

.

. . . .

. .

-----

. . . . . . .

server and a server of the ser

The second se

**-**- -

-----

. . .

.. .

. . .

- - -- - - -

- ----

. . . . .

. . . . . .

• .... \_

. ..

. . .

.

- -

- .

. .

1

.

 $\mathbf{x}^{(i)}$ 

.

EPIDENTHIC PLANKTON ANALYSIS

| FROM COLLECTIONS | FILEID     | 5141109 | SAMPLE |
|------------------|------------|---------|--------|
|                  | 813228     | 14410   | F 1    |
|                  | n LJAZA    | 14010   | F 2    |
|                  | 814427     | 14011   | εī     |
|                  | 61 427     | 14011   | Ē 2    |
| -                | 81 J 42 7  | 14012   | Ēī     |
|                  | #1 JA27    | 14012   | Ē 2    |
|                  | 81 1 4 2 7 | 1.013   | ĒĪ     |
|                  | 81 J A 27  | 14013   | εż     |
|                  | BLAZE      | 14014   | ٤ĩ     |
|                  | 81 JA29    | 14014   | ΕZ     |
|                  | 414428     | 14415   | ΕĴ     |
|                  | 61 AZ 4    | 14015   | É 2    |
|                  | R14714     | 14801   | Εï     |
|                  | BIAP14     | 1+001   | E 2    |
|                  | 814914     | 14003   | εi     |
|                  | HIAPI4     | 14000   | ε 1    |
|                  | 814734     | 14003   | ΕŻ     |
|                  | 81AP14     | 14004   | E 1    |
|                  | 81AP14     | 14004   | ĘΖ     |
|                  | 81AP14     | 14007   | ε1     |
|                  | 61AP14     | 14007   | ΕŻ     |
|                  | 81AP14     | 1-010   | EÌ     |
|                  | 814P14     | 14010   | E 2    |
|                  | 61AP14     | 14013   | E 1    |
|                  | 81AP34     | 14013   | E 2    |
|                  | 81AP14     | 14016   | E 1    |
|                  | 814914     | 14014   | E 2    |
|                  | 01JY14     | 14003   | E 1    |
|                  | 811414     | 14003   | Ĕ Z    |
|                  | W1 J Y 1 4 | 14301   | E 1    |
|                  | 813724     | 14001   | Ľ Z    |
|                  | 813714     | 14004   | E. 1   |
|                  | 81JY14     | 14404   | E 2    |
| -                | 81JY14     | 1+007   | E 1    |
|                  | 81JY14     | 14047   | E 2    |
|                  | 011114     | 14010   | E 1    |
|                  | 81JY14     | 14010   | ٤Z     |
|                  | N1 JY14    | 14013   | E 1    |
|                  | 811614     | 14015   | F 2    |
|                  | 91JY14     | 14014   | ε ι    |
|                  | 41.1414    | 14014   | £ 2    |

SPECIES DEFINITIUN -TRUNCATED = NU LH-STAGE = COMPLETE PARTS CODE UNALTEPED

.

٤

ł

.

ABUNDANCES AND WEIGHTS APE ADJUSTED TO A VOLUME OF 1.0 CUBIC METERS.

Epibenthic Sled Collections

# EPERLATHEC PLACETOR ANALYSES

|                                 | ITE A N  | PANGE                | 5.0.      | CDFF.VAR |
|---------------------------------|----------|----------------------|-----------|----------|
|                                 |          | *********            | ****      |          |
| SAMPLE VOLUME<br>(M##3)         | £u.      | .03-                 | .04       | 1.52     |
| TUTAL NET VEIGHT<br>(PER N++3)  | . 796    | .012-<br>20.924      | 2.267     | 2 - 8 48 |
| TOTAL ABUNGANCE<br>(PER N+#3)   | 89696.00 | 120.00-<br>* .191+07 | 231967.77 | 2.59     |
| SAMPLE WET WEIGHT<br>(PER M##3) | . 574    | n-<br>16.680         | 1.419     | 2.469    |
| SAMPLE DPY WEIGHT               | 0        | 0-                   | o         | 0        |
| LEER (1774)                     |          | •                    | -         |          |

in the second second

•••••

٠ ،

| ORGANISM NAME     |             | •        | NUMBERS | /8++3                   |           | •    | WET WETGHT | GRAHS/H++             | 3    | • AVG. | BIOMASS | · PERCEN | TAGES |
|-------------------|-------------|----------|---------|-------------------------|-----------|------|------------|-----------------------|------|--------|---------|----------|-------|
| PARTS CLDE        | LII-STAGE   | * TOTAL  | MEAN    | RANGE                   | S.N.      | TOTA | L MEAN     | RANGE                 | 5.0. | • REAN | 5.0.    | • DANCE  | MASS  |
| HYDROLDA          | D-PULYP     | 100.0    | .8      | 160.0 -<br>160.4        | 11.3      | .0   | 04 .000    | .004-                 | .00  | .0000  | 0       | .00      | .00   |
| TURBELLAP IA      | 1-FGG       | 40+0     | •2      | 40.0 -                  | 2.8       | • U  | 04 .000    | .604-                 | •00  | .000 L | Q       | .00      | .00   |
| TURBELLAPIA       | h-40UL T    | 1360.0   | 0.8     | 40.0 -<br>N+0.0         | 68.5      | .0   | 48 .000    | .004-                 | .00  | .0001  | .0600   | •01      | .03   |
| TURBELLAPIA       | C-J/A NOSEY | 22286.7  | 127.1   | 40.0 -                  | 357.5     | 1.0  | 22 .008    | .004-                 | •03  | .0001  | .0002   | .14      | 1.02  |
| UKAELLARIA        | L-FGG+C FFM | 46.0     | .2      | 40-0 -                  | 2.4       | .0   | 04 .000    | .604-                 | . 00 | .0001  | ٥       | .00      | •00   |
| CKENATODA         | C+J/A NONEX | 200.0    | 1.0     | 200.0 -                 | 14.2      | • C· | 000 +000   | .004-                 | •00  | .0000  | 0       | .00      | .00   |
| RUTIFRA           | 8-ADULT     | 274026.7 | 1377.0  | 40.0 -                  | 5481.7    | 3.2  | .016       | .004-                 | .12  | .0000  | .0000   | 1.54     | 2.07  |
| UTIFERA           |             | 13920.0  | 69.9    | 1920.0 -                | 960.8     | -1   | .001       | .008-                 | • 01 | .0000  | .0000   | -04      | . 67  |
| UT1FFRA           | C-J/A NOSEX | 27933.3  | 14014   | 40.0 -                  | 869.4     | • 2  | 34 .001    | .004-                 | •00  | .0000  | .0000   | .16      | .15   |
| IE MATODA         | B-ADIN T    | 25600.0  | 128.0   | 40.0 -                  | 727.8     | • 1  | 76 .001    | .004-                 | .00  | .0000  | .0000   | -1+      | • 11  |
| E MA TUDA         | G-L RAJVAAD | 326.0    | 1.6     | 320.0 -                 | 22.7      | • 0  | .000       | .004-                 | .00  | .0000  | 0       | .00      | . Cu  |
| ICHATODA          |             | 162360.0 | 916.4   | - 0.0HB                 | A# 50 + 4 | • 43 | 20 .002    | L04-                  | • 07 | .0000  | .0000   | 1.02     | . 27  |
| ie matilda        | C-J/A NOSEK | + .1E+u7 | 6924.8  | 40.0 -                  | 19884.7   | 7.0  | .035       | .604-                 | .13  | .0000  | .0000   | 7.12     | 4.45  |
| IE NA TIJMJ RPH A |             | 69900.0  | 351.0   | 160.6 -                 | 1393.4    | . 4  | 97 .002    | .604-                 | .01  | .0000  | .0000   | . 39     | .31   |
| IC NATONJEPHA     |             | 400.0    | 2.0     | 160.0 -                 | 20.4      | • 0. | 24 .000    | .008-                 | • Ov | .0001  | .0000   | •00      | .02   |
| ULYCHAETA         |             | 840.0    | 4.7     | 40.0 -                  | 79.d      | • 0  | 52 .OUA    | .604-                 | .00  | .0001  | .0000   | .00      | •03   |
| JL YCHAETA        | D-LAKYA     | 3366.7   | 17.0    | 40.0 -                  | 155.*     | • 1  | 35 .001    | .004-                 | .01  | .0001  | .0000   | •02      | .09   |
| ULYCHAFTA         | C-J/A NGZEX | 120.0    | • 6     | لم¢ء0<br>40ء0 ∽<br>د^م₁ | 6.1       | • 6  | .000       | .007<br>.004-<br>.004 | .00  | .0001  | .0000   | . 0.)    | . 01  |

# CPININTHIC PLANKING ANALYSIS

### SUNNARY TARLES PAGE &

.

.

4

L

.

....

**、** \*

| URGANISH NAME       |                         | •            | NUH8EKS.   | /#+#3             |           | • ¥     | ET SETURT. | GRANS/N++ | 3               |                     | RIGHASS     |                                       |                                        |     |
|---------------------|-------------------------|--------------|------------|-------------------|-----------|---------|------------|-----------|-----------------|---------------------|-------------|---------------------------------------|----------------------------------------|-----|
| PARTS CODE          | LH-STAGE                | •<br>• 10744 | MC 4 M     | B . NOT           |           | •       |            |           |                 | •                   | 0104631     | • • • • • • • • • • • • • • • • • • • | ITAGES<br>BIC+                         |     |
|                     | LII-3189L               | •            | 72 AN      | PANGE             | 5.0.      | * TOTAL | PEAN       | PANGE     | 5.0.            | . AEAN              | S.∎.        | . UANCE                               | HASS                                   |     |
| PULYNJIDAE          |                         | 40.0         | +2         | 40.0 -            | 2.8       | .00     | 5 .000     |           |                 |                     |             |                                       |                                        |     |
| 844110000 1045      | 0-LARVA                 |              |            | 40.0              |           | •       |            | .004      | .00             | *0001               | . U         | •00                                   | -0-                                    |     |
| FULLCODOCIDAC       | 7-JUVENTER              | H0.u         | +4         | 40.0 -            | 4.0       | +001    | 6 .VOO     | .004-     |                 | .0001               | U U         | .00                                   |                                        | · • |
| NEANTHES LINNICOLA  | 1-0010111200            | 400.0        | 2.4        | 40.0<br>400.0 -   | 34 4      |         |            | +004      | _               |                     | ,           |                                       |                                        |     |
|                     | C-J/A NOSEX             |              |            | 400.0             | 2014      | .400    | 1 .002     | - 400-    | .03             | +0010               | ٥           | .00                                   | • 25                                   |     |
| SPIONIDAE           |                         | 80.0         | . 4        | 00.0 -            | 5.7       | +004    | .000       | .004-     | . 00            | -0001               | •           | . 64                                  |                                        |     |
| SPIDNIDAE           | D-LARVA                 | 1140.0       |            | 80.0              |           |         |            |           |                 |                     | •           |                                       | +00                                    |     |
| ••••••••            | 7-JUVLNILE              | 110010       | 740        | 1000.0            | /1.4      | .108    | .001       | .604-     | .01             | .0001               | .0000       | .01                                   |                                        | -   |
| SPIONIDAE           | • • • • • • • • • •     | 573.3        | 2.9        | 40.0 -            | 21.0      | . 637   |            |           |                 |                     | ·           |                                       | ···· · · · · · · · · · · · · · · · · · |     |
| COMPATION FORE      | C-J/A NOSEX             |              |            | Z 13. 3           | • • • •   |         |            | 015       |                 | *0001               | 10000       | • 00                                  | + 62                                   |     |
| CIRKATOLIOAC        | 7-JUVENTER              | 666.7        | 3.4        | 666.7 -           | 47.3      | . 007   | .000       | .067-     | .00             | .0001               | 0           | .00                                   | .04                                    |     |
| CERRATULIDAE        | 1.20010-1465            | 17406.7      | 9u.0       | 000.7<br>7240.0 - | 911.7     | 14.1    |            |           | ······          |                     |             |                                       |                                        | _   |
|                     | C-J/A NOSEX             | • • • • • •  |            | 10600.7           | 74141     | • 4 • 1 | +001       | +067-     | -01             | •0000               | .0000       | .10                                   | .04                                    |     |
| AMPHARETIDAE        | <b>•</b>                | 7648.9       | 38.4       | 40.0 -            | 189.5     | . 430   | .002       |           |                 | - 0001              | -0060       |                                       | · ·-                                   | •   |
| ANPHARETIDAE        | LADACHTE C              | 26920.0      | 175.5      | 1333.3            |           |         |            | 195,      |                 |                     |             | 104                                   | • 6 1                                  |     |
|                     | .C-J/& NOSEX,           | 3472010      | 11212      | 32080.0           | 22/3+3    | 1.768   | .009       | .004-     | +11             | +0061               | .0000       | .20                                   | 1.12                                   |     |
| HUBSUNIA FLORIDA    |                         | \$20.0       | 2.0        | 160 y -           | 27.9      | .012    | .000       |           |                 | -                   |             |                                       | ·                                      |     |
| MERSONIA GLORIDA    | 7-JUVENILE              |              | . –        | 0.032             |           |         |            |           | 100             | .0000               | .0000       | +00                                   | .01                                    |     |
| Unnpoite contra     |                         | 40.0         | •2         | 40.0 -            | 2.8       | • 04 0  | .000       | .040-     | .00             | .0010               | 0           | .00                                   | .03                                    | •   |
| HUBSONIA FLORIDA    | 8 - AV461.              | 240.0        | 1.7        | 50.0 -            | 14.4      |         |            |           |                 |                     |             |                                       |                                        |     |
| *                   | CHUIA NOSEX             |              |            | 200.0             | 1414      | .008    | .000       | .004-     | •00             | .0001               | +0001       | .00                                   | .61                                    |     |
| SABELLIDAE          |                         | 1213.3       | 6.1        | 40.0 -            | 72.7      | . 013   | .000       | .004-     | 00 <sup>-</sup> | .0000               | - 9000      |                                       |                                        | •   |
| MANAYUNKIA SP.      | E4414 UNZEX             | <b>63 3</b>  |            | 1013.3            |           |         |            | ,005      |                 |                     |             | •••+                                  | .01                                    |     |
|                     | C-J/A NOSEX             | 4313         | • 7        | 93.3 -            | 6.6       | .009    | +000       | .009-     | .00             | .0001               | 0           | .00                                   | .01                                    |     |
| OL I GOCHAFTA       |                         | 1200.0       | 6+0        | 1200.0 -          | 85.1      | . 004   | -000       | .009      |                 | · ··· · · · · · · · | · · · · · · |                                       |                                        |     |
| OLTOUCHARTA         | Q-LAKYA                 |              |            | 1200.0            |           |         |            | .004      | + 00            | *0000               | 0           | +01                                   | + û û                                  |     |
| OLIGOLAAFIA         | 7- JUV/ND C             | 2960.0       | 14.9       | 44.0 -            | 149.2     | .056    | .00n       | .004-     | .00             | .0001               | .0000       | +02                                   | .66                                    |     |
| OL L GUCHAFTA       | 14 804 1911 5           | 408-0        | 2.1        | 2000.0            |           |         |            | .004      | -               |                     | · _         |                                       | •••                                    |     |
| 0.1008              | U-ADULT                 |              | •••        | 160.0             | 4343      | • 3 * • | .002       | .002-     | • 02            | +0012               | +0026       | .00                                   | .24                                    |     |
| UL LGOCHAETA        | o                       | 160.0        | <b>,</b> R | 80.0 -            | 8.0       | .008    | .000       |           | .00             | .0001               | <b>, i</b>  |                                       |                                        |     |
| DELGOCHAFTA         | A-Fk+3A+VD              |              | 63.3 6     | 60.0              |           |         |            | ,004      |                 |                     |             | +00                                   | *01                                    |     |
|                     | A-JUV+ADULT             | 0/11010      | 437.4      | 240.0 -           | 6124+6    | .808    | +004       | +004-     | .05             | .0000               | .0000       | .49                                   | .51                                    |     |
| OL L GUCHAF TA      |                         | 21076.7      | 5110.0     | 40.0 -            | 63 46 . 7 | 6.453   | . 63.2     | .BUD      | ··· , e         |                     |             |                                       |                                        |     |
| HEDIOTRE &          | C-J/A NOSEX             |              |            | 64066.7           | •• •••    |         | 1032       | 1.604     | •12             | .0000               | .0000       | 5.30                                  | 4.07                                   |     |
| NIKODINE K          | (-1/4 MOS 6 V           | 40.0         | ۰Z         | 40.0 -            | 2. *      | .040    | .oun       | .040-     | .06             | .0010               | - o         | . 00                                  |                                        | e   |
| GASTROPODA          | ACALM UNSER             | 80.4         | - 6        | 40.0              |           |         |            | .040      |                 |                     |             |                                       |                                        |     |
|                     | 7 <del>.</del> JUVENILL |              | ••         | 40.0              | 4.0       | + 00 8  | .000       | .604-     | .00             | .0001               | 0           | .04                                   | .01                                    |     |
| NESDGASTROPODA      | -                       | 80.0         | •4         | 60.0 -            | 5.7       | .008    | .000       | .00%      | uo              |                     | · ,         |                                       | · · · · · · · · ·                      |     |
| GONTOBASIS PLICIEFA | 7-JUVENILE              |              |            | 60.0              |           |         |            | .408      | •••             | 10001               | ų           | .00                                   | .01                                    |     |
|                     | 7-JUVENILE              | 40+0         | •2         | 40.0 -            | 2.A       | +004    | .000       | .604-     | .00             | +0001               | 0           | .00                                   | .00                                    |     |
|                     |                         | ·            |            | 90.5              |           |         |            | .005      | <b>_</b> • ·    |                     |             |                                       |                                        |     |

.

# EPINENTHIC PLANNTUN ANALYSIS

-

į.

٠

•

....

.

L

• \*

| ORGANISM NAME       |                    | :       | NUMBERSI | 4**3             | *      | WET   | SI IGHT . | G# AMS / M++3  | } .  | 4¥6.    | 8104455  | + PLREFN'<br>+ ABUN- | AGES<br>DIC- |
|---------------------|--------------------|---------|----------|------------------|--------|-------|-----------|----------------|------|---------|----------|----------------------|--------------|
| PARTS COUE          | LH-STAGE           | + TUTAL | MEAN     | <b>RANG</b> F    | s.n. * | TOTAL | PEAN      | PARGE          | 5.0. | • MEAN  | 5.0.     | + DANCE              | MASS         |
| HECOSOMATA          | - 6105405          | 1120.0  | 5.0      | 1120.0 -         | 79.4   | .010  | .000      | ,016-          | • 00 | ,0000   | ¢        | .01                  | +01          |
| IVALVIA             |                    | 10100.7 | 50.8     | 40.0 -           | 294.6  | .433  | .002      | .604-          | •01  | ,0001   | .0000    | •06                  | . 27         |
| IVALVEA             |                    | 80170.7 | 443.1    | 32.0 -           | 2457+3 | 3.004 | •015      | .002-          | •12  | .0001   | -0002    | .49                  | 2.20         |
| IVALVIA             |                    | 80.0    | . 5      | 40.0 -           | 4.0    | .008  | .000      | .004-          | .00  | .0001   | 0        | .00                  | •01          |
| Ene Ruida           | - J/A RUSEA        | 1440.0  | 7.2      | 40.0 -           | 77.9   | .164  | 100.      | .04-           | .01  | .0001   | .0003    | .01                  | •10          |
| ORBICULA SP.        | 7-40VENIL 5        | 80.0    | .4       | 40.0 -           | 4.0    | .006  | .000      | .004-          | .00  | ,0061   | 0        | •00                  | .01          |
| URAICULA HANILENSI  | S (FLUMINEA        | 150.0   | . 6      | 40.0 -           | ñ.3    | .008  | .000      |                | .00  | , .0001 | .0000    | .00                  | 101          |
| CARINA              | I-JUVLNILE         | 8u.u    | .4       | 40.0 -           | 4.0    | .008  | .000      | -104-          | .00  | *0001   | D        | •00                  | .01          |
| CAPINA              | 7-2UVLNILE         | 1100.0  | 5.5      | 40.0 -           | 42.7   | .094  | .000      |                | •0ú  | .0001   | +0000    | .01                  | • 06         |
| CARINA              | 8- 4 DULT          | 2440.0  | 12.3     | 500.0            | 74.8   | .064  | .040      | .020           | •00  | .0000   | +0000    | .01                  | +04          |
| CANINA HYDRACARINA  | PROSTIGNAT         | 120.0   | .0       | 40.0 -<br>40.0 - | 4.9    | .012  | .000      | .016           | .00  | ,0001   | . 0      | .00                  | +01          |
| CARINA HYURACARINA  | PROSTIGMAT         | 326.0   | 1.0      | 40.0<br>40.0 -   | 11.3   | •02e  | .000      | .004-          | .00  | .0001   | .0000    | .00                  | . 02         |
| RUSTACEA            | C-J/A NOSEX        | 520.0   | 2.6      | 120.0            | 34.9   | .012  | .000      | .006           | .00  | ,0000   | 0        | •00                  | •01          |
| LADOCERA            | L-E 66             | 40.0    | .2       | 520.0            | 3.8    | .004  | .000      | .004-          | .00  | .0001   | 0        | .00                  | .00          |
| LADUCERA            | 1-ECC              | 200.0   | 1.0      | 40.0<br>40.0 -   | 11.7   | .020  | .000      | .004           | •00  | .0001   | 0        | .00                  | .01          |
| LAPOCERA-EUCLADOCE  | C-J/A NOSEX<br>Ra  | 100.0   | . A      | 160.0<br>160.0 - | 11+3   | .016  | .000      | .016-          | .00  | .0001   | 0        | ÷00                  | .01          |
| LAPHANJSUNA BRACHY  | 7-JUVLNILE<br>URUM | 213.3   | 1.1      | 160.u<br>53.3 -  | 8.8    | .021  | .000      | .016           | .00  | .0001   | .0000    | .00                  | .01          |
| SAPHANOSONA BRACHY  | 7-JUVENILE<br>URUM | 120.0   | • 6      | 40.0<br>40.0 -   | 4.9    | .012  | .000      | .008<br>-004-  | .00  | .0001   | 0        | •00                  | .01          |
| IAPHANUSUNA BRACHYI | 6⊷ADULT<br>UPUM    | 1760-0  | 8.H      | 40.0<br>40.0 -   | 57.7   | .148  | .001      | .004<br>.004-  | .00  | .0001   | .0000    | +01                  | .09          |
| IDA ERVSTALLINA     | C-J/A NOSEX        | 80.0    | . 4      | 666.7<br>86.0 -  | - 7    | .008  | .000      | 1067.<br>•und- | .00  | 20001   | · ·····o | .00                  | +01          |
| IDA CRYSTALLINA     | 7-JUVENILE         | 136.0   | . 7      | 80.0<br>16.0 -   | 5.0    | .014  | .000      | .008<br>.002-  | .00  | .0001   | 0        | .00                  | .01          |
| APHALA SP.          | H-ADULT            | 59280.0 | 297.9    | 40.0 -           | 1067.1 | . 641 | .004      | .004<br>.004-  | .01  | .0001   | +0000    | .33                  | . 53         |
| APURLA SP.          | 7-JUVENILE         | 760.0   | 3.#      | 8080.0 -         | 27.1   | .048  | .000      | .104<br>.004-  | .00  | .0001   | .0000    | .00                  | • ù 3        |
| APHNIA SP.          | U-ADUL I           | 260-0   | ∠.0      | 280.0<br>80.0 -  | 34.5   |       | .000      | .020           | .ú0  | .0000   | .0000    | .00                  | .01          |
| APHNILA SP.         | A-JUV+ADULT        | 3328-0  | 16.7     | 4HU.0            | 44.9   | . 174 | .001      | .004           | .00  | .0001   | .0000    | .02                  | . 11         |
|                     | C-J/A ROSEX        |         |          | 280.0            | - /    |       |           |                |      |         |          |                      |              |

.

....

---

.

•

| rs – |  |  |  |
|------|--|--|--|
|      |  |  |  |

.

.

### SUMMARY TABLES PACE 8

L ...

| GANISH NAME     |                      | •            | NUMBERS/ | M++3     | ٠        | WET    | <b>WELGHT</b> | GP A M * / M * + ' | 9     | • AVG. E    | 114455    | . PERCEN | TAGES |
|-----------------|----------------------|--------------|----------|----------|----------|--------|---------------|--------------------|-------|-------------|-----------|----------|-------|
| PARTS CODE      | LH-STAGE             | *<br>• TOTAL | PEAN     | RANGE    | s.n. *   | TOTAL  | PEAN          | RANGE              | s.n.  | •<br>• MEAN | s.n.      | . DANCE  | MASS  |
| HN14 5P.        |                      | 240.0        | 1.2      | 40.0 -   | 12.0     | . 02 4 | .000          | .u04-              | .00   | .0001       | 0         | .00      | • 02  |
|                 | L-EGG-C FE4          |              |          | 100.0    |          |        | • • • • •     | .016               | 60    |             |           |          |       |
| HNIA PULEX      |                      | 40.0         | • 4      | 40.0 -   | 4.0      | .005   | .000          | +004-              | .00   | -0001       |           |          |       |
|                 | 8-ADULT              | 126.0        | . 6      | 40.0 -   | 5.9      | .012   | .000          |                    | .00   | .0001       | 0         | .00      | .01   |
| HNIA PULEA      | C-J/A NOSEX          | 12010        | ••       | 40.0     |          |        | • • • •       | .004               |       |             |           |          |       |
| HNIA ROSEA      |                      | 13520.0      | 67.9     | 60.0 -   | 389.7    | .164   | .001          | .004-              | .01   | .0000       | •0000     | .04      | .10   |
|                 | 7-JUVSNILE           |              |          | 4000.0   |          |        |               | • 0 • 7            |       |             |           |          |       |
| HNIA ROSEA      |                      | 1480.0       | 7.4      | 40.0 -   | 35.3     | .068   | .000          | .004-              | .00   | 10001       | .0000     | • • •    | + 64  |
|                 | 8-A0ULT              |              |          | 320.0    |          |        |               | +010               |       | .0000       | -0060     | . 0.2    |       |
| HNIA POŠEA      | 4 - 1141 - 4 Nut - T | 2766.0       | 13.9     | 1120.0 - | 10114    | .020   | .000          |                    | 100   |             |           |          |       |
|                 | A-104+ADULI          | 5946.7       | 30.4     | -120.0 - | 141.1    | .109   | .001          | .005-              | .00   | .0000       | .0000     | .03      | .07   |
| NNIA BUJEA      | C-J/A NOSEK          | 240017       | 2441     | 1260.0   |          |        |               | .016               |       |             |           |          |       |
| HNTA POSEA      |                      | 200.0        | 1.J      | 40.0 -   | 11.7     | *050·  | .000          | .004-              | .uo   | .0001       | 0         | .00      | -01   |
|                 | L-EGG-C FEN          |              |          | 160.0    |          |        |               | .016               |       |             |           | ·        |       |
| HHIA GALEATA    |                      | 4020.7       | 20.2     | 40.0 -   | 88.1     | .083   | .000          | 04-                | .00   | .0000       | •0000     | +02      | .05   |
|                 | 7-JUVENILE           |              |          | 640.0    |          |        |               | .013               | 00    | 0001        | 0000      |          | . 03  |
| HNIA GALEATA    |                      | 520.0        | 2.4      | 40.0 -   | 14+2     | .048   | .000          | .004-              | + 40  | *0001       | +0000     |          |       |
|                 | 6-AOULT              |              |          | 100.0    | 85.7     | .024   | .008          | .004-              | .00   | .0000       | "ouou"    | .02      | .02   |
| MNIA GALLATA    | AT ALVARIAN T        | 2000.0       | 1447     | 040-0    |          |        |               | .008               | •     | •••••       | -         |          |       |
| HANTA CALEATA   | A-BOA-ADOFT          | 9400.0       | 47.2     | 40.0 -   | 172.3    | .200   | .001          | .004-              | .00   | .0000       | .0000     | .05      | .13   |
|                 | C-J/A NOSEX          |              |          | 1280.0   | -        |        |               | .032               |       |             |           |          |       |
| HNIA GALEATA    |                      | 200.0        | 1.0      | 40.0 -   | 11.7     | .008   | .000          | .404-              | .00   | .0001       | .0001     | +00      | .01   |
|                 | L-EGG-C FEM          | _            |          | 160.0    |          |        |               | .004               |       |             | 0000      | na       |       |
| HNIA RETRUCURVA |                      | 16756.0      | 84.2     | 40.0 -   | - 34 - 1 | .279   | *001          | .067               |       | 10000       | 10000     |          | •••   |
|                 | 7-JUVENILE           | 440 0        | 3.9      | 1920.0 - | 16.1     | -040   | . 000         | .004-              | .00   | .0001       | .0000     | .00      | .03   |
| UNIA PEIKULUKVA | an struct T          | 640.0        | 3.2      | 120.0    |          |        |               | .008               | • - • | • • • • • • |           |          |       |
| HNEA RETROCUEVA | 0-20051              | 160.0        | .0       | 160.0 -  | 11.3     | .004   | .000          | .004-              | .00   | .0000       | 0         | .00      | .00   |
|                 | A-JUV+ADULT          |              |          | 160.0    |          |        |               | .004               |       |             |           |          |       |
| HNIA RETROCURVA |                      | 6200.0       | 31.2     | 40.0 -   | 104+4    | .136   | .001          | +004-              | .01   | .0000       | .0000     | .03      | • 6 4 |
|                 | C-J/A NOSEX          |              | _        | 4240.0   |          |        |               | .080               |       | .0001       | .0000     | .00      | .01   |
| HNIA PARVULA    | <b>. .</b>           | 120.0        | •6       | 40.0 -   | 6.3      | .008   | •000          | +004+              | •••   | 10001       |           |          |       |
|                 | B-ADULI              | 120 0        |          | 40.0 -   | 4.9      | .012   | .000          | +U04=              | .00   | .0001       | 0         | .00      | .01   |
| THELA PARYOLA   | C+3/4 NIK 64         | 120.0        | ••       | 40.0     | 7.7      |        |               | .004               |       |             | •         |          |       |
| INCRYPTUS SP-   | A ALE HOLES          | 480.0        | 2.4      | 40.0 -   | 14.9     | .040   | .000          | .004-              | .00   | .0001       | .0000     | .00      | .03   |
|                 | 7-JUVENILE           |              |          | 160.6    |          |        |               | .016               |       |             |           |          |       |
| FOCRYPTUS SP.   |                      | 2320.0       | 11.7     | 40.0 -   | 104.4    | .052   | .000          | .004-              | •00   | .0001       | .0000     | .01      | •03   |
|                 | a-ADULT              |              |          | 1280.0   |          |        |               | .020               |       | 0.07.0      | . 0000    |          | .0    |
| UCRYPTUS SP.    |                      | 3200.0       | 16.1     | 1500.0 - | 164.0    | .060   | .000          | .0.0-              | +00   | .0000       |           |          |       |
|                 | 4-108+400£T          | 1000 0       |          | 1040-0   | 25.5     | . 100  | . 001         | 04-                |       | .0001       | ^ · · · o | .01      | . 66  |
| IUCKINIUS SP.   |                      | 1000.0       | 2+0      | 400.0    | 5764     |        |               | .040               |       |             | •         |          |       |
|                 | CHANN MUSEN          | 60.0         | .7       | 40.0 -   | 2.8      | .004   | .000          | .004-              | .00   | .0001       | 0         | .00      | .00   |
| UCKIFIUS SF4    | 1-866-C FFM          |              |          | 40.0     | •••      |        |               | .004               |       |             |           |          |       |
| INDAPHNIA SP.   |                      | 2186.7       | 11.0     | 40.0 -   | FA.8     | .133   | .001          | +004-              | +00   | .0661       | •0000     | .01      | . 69  |
|                 | 7- HOWEN DE          |              |          | 486.0    |          |        |               | .044               |       |             |           |          |       |

B-9

• \*

EPIBERTHIC PLANKTON ANALYSIS

.

1

.

.

----

| DRGANISH NAME      |                       | :        | NUMAERS/ | ***3            | :      | #ET    | WEIGHT, | GRANS /M++1 | 3     | • AVG. | BIGNASS | * PERCENT<br>* ABUN-                    | IAGES<br>HIG- |   |
|--------------------|-----------------------|----------|----------|-----------------|--------|--------|---------|-------------|-------|--------|---------|-----------------------------------------|---------------|---|
| PARTS COUE         | LH-STAGE              | * TOTAL  | MÊ AN    | PANGE           | 5.D. • | TOTAL  | PEAN    | RANGE       | \$.0. | + PEAN | S.D.    | . DANCE                                 | MASS          |   |
| CERIUDAPHNIA SP.   | N-1011 T              | 280.0    | 1.4      | 40.0 -          | 13.0   | .012   | .000    | .604-       | •00   | .0001  | .0000   | .00                                     | .01           |   |
| CERIODAPHNIA SP.   | 0-144 NO.54           | 1640.0   | 6.2      | 40.0 -          | 54.9   | .036   | .000    | .004-       | .00   | .0000  | +0000   | .01                                     | .02           |   |
| CERIUDAPHNIA SP.   | L-CCC-P ECH           | 40.0     | .4       | +0.0 -          | 4.0    | .009   | .000    | .004-       | .00   | .0001  | 0       | .00                                     | .01           |   |
| ERIODAPHNIA PETIC  | ULATA                 | 520.0    | 2.0      | 40.0 -          | 18.5   | .036   | .000    | .604-       | .00   | .0001  | .0000   | .00                                     | .02           |   |
| ERIDOAPHNIA RETIG  | ULATA                 | 960.0    | 4.B      | 40.0 -          | 26.5   | .040   | .000    | +004-       | .00   | .0001  | •0000   | .01                                     | .03           |   |
| CERIODAPHNIA RETIC | ULATA                 | 240.0    | 1.2      | 240.0 -         | 17.0   | .004   | .000    | .004-       | .00   | .0000  | 0       | .00                                     | .00           |   |
| CERIODAPHNIA RETIC | ULATA                 | 780.7    | 4.0      | 40.U -<br>240.0 | 21.8   | .047   | .000    | .u04-       | •00   | .0001  | .0000   | .00                                     | .03           |   |
| CERIODAPHNIA RETIG | ULATA                 | 150.0    | . 0      | +0.0 -          | 4.9    | .012   | .000    | .004-       | .00   | .0001  | 0       | .00                                     | .01           |   |
| CERIODAPHNIA QUADA | ANGULA<br>7-10V/NTL5  | 40.0     | •4       | 40.0 -          | 2.8    | •004   | .000    | .604-       | .00   | .0001  | 0       | .00                                     | .00           |   |
| CERIUDAPHNIA QUADA | ANGULA<br>B-ADULT     | 80.0     | •4       | 40.0 -          | 4.0    | .00 fi | .000    | 004-        | .00   | .0001  | 0       | .00                                     | .01           |   |
| CAPHOLEBERTS MUCH  |                       | 40.0     | • 2      | 40.0 -          | 5.8    | .004   | .000    | .604-       | .00   | .0001  | 0       | .00                                     | .00           |   |
| CAPHOLEBERIS MUCH  | IONATA<br>Colta NOSEY | 40.0     | •4       | 40.u -          | 2.4    | .004   | .000    | .004-       | •u0   | .0001  | 0       | .00                                     | .00           |   |
| BUSHINA SP.        |                       | 200.0    | 1.0      | 200.0 -         | 14.2   | ±004   | .000    | .004-       | •00   | .0000  | 0       | •00                                     | •00           |   |
| NOSMENA SP.        | 7                     | 11920.0  | 59.9     | 40.0 -          | 374.8  | .144   | .001    | .004-       | .00   | .0000  | .0000   | .07                                     | . 09          |   |
| BOSMINA SP.        |                       | 74290.0  | 373.3    | 40.0 -          | 825.7  | 1.594  | .008    | .004-       | .03   | .0000  | .0000   | . 42                                    | 01            |   |
| SOSHINA SP.        | A- INVALUEL           | 222040.0 | 1119.8   | 6J.0 -          | 2664.1 | .981   | .005    | .004-       | •0Z   | .0000  | .0000   | 1.25                                    | .62           |   |
| SOSHIHA SP.        |                       | 33600.0  | 199.9    | 40.0 -          | 1182.6 | 7.230  | .011    | -004-       | ·11   | .0001  | .0000   | .19                                     | 1.41          |   |
| BUSMINA SP.        |                       | 56472.0  | 283.8    | 40.0 -          | 501.1  | 1.611  | .006    | .004-       | •02   | .0000  | .0000   | . 32                                    | 1.02          |   |
| BOSMENA LONGEROSTI |                       | 360.0    | 1.6      | 360.0 -         | 25.5   | +004   | -000    | 04-         | .00   | .0000  | . 0     | .00                                     | .00           | _ |
| MUSHINA LONGIROST  |                       | 80.0     | .4       | 40.0 -          | 5.7    | .004   | .000    | .004-       | .00   | .0003  | 0       | .00                                     | .00           |   |
| USAINA LONGIROSTI  | RIS<br>NELCONT FEM    | 200.0    | 1.0      | 200.0 -         | 14+2   | .004   | .000    | .004-       | .00   | .0010  | 0       | .00                                     | .00           |   |
| EVADRE NORDMANNI   | 1-100-6 FER           | 1040.0   | 5.2      | 40+0 -          | 68.1   | .024   | .000    | +004-       | .00   | .0001  | .0000   | .01                                     | • 0Z          |   |
| PODOn SP.          |                       | R0.0     | .4       | 80.0            | 5.7    | .008   | .000    | .008-       | .00   | ,0001  | 0       | .00                                     | •ŭ1           |   |
| PODON SP.          | I-JUYLNILE            | 46.0     | •2       | 40.0 -          | 5.9    | .404   | .040    | .004-       | .00   | .0001  | 0       | .00                                     | .00           |   |
| РОЛАН РАСУРНАСКОТ  | DES<br>1              | .0       | .0       | .0 -            | •0     | .000   | .040    | NFG         | .00   | +0001  | 0       | .00                                     | .00           |   |
|                    | L-266-6 FEM           |          |          | • 0             | •      |        |         |             |       |        |         | ••••••••••••••••••••••••••••••••••••••• |               |   |

EPIDESTHIC PEANNTON ANALYSIS

.

~

.

#### SURBARY TABLES PARE 10

| URGANISH NAME     |                               | •            | NUMBERS | /#++3                  | •                 | WĚT     | WE IGHT, | GRAHS/H++      | 3 <sup>-</sup> | * AVG. | BJUMASS | . PERCENT | AGES              |
|-------------------|-------------------------------|--------------|---------|------------------------|-------------------|---------|----------|----------------|----------------|--------|---------|-----------|-------------------|
| PAPTS CUDE        | LH-STAGE                      | •<br>• TUTAL | MEAN    | RANGE                  | s.n. •            | TI, TAL | HE AN    | PANGE          | 5.0.           | • BEAN | 5.0.    | • UANCE   | MA55              |
| HYOURIDAE         | 7-JUVINDE                     | 400.0        | 2.0     | 40.0 -                 | 11.2              | .024    | .040     | .L04-          |                | .0001  | .0060   | •00       | - 62              |
| HYDUR IDAF        | 6-ADULT                       | 100.0        | • U     | 40.0 -<br>60.0         | 6.9               | .016    | .000     | .004-          | .00            | .0001  | 0       | .00       | .01               |
| HYDUR IDAF        | C-J/A NUSER                   | 2560.0       | 12.4    | 40.0 -<br>640.0        | 64.5              | •169    | +001     | .CO4-<br>.Po4  | •01            | .0001  | .0060   | •01       | •15               |
| HYDIIP IDAE       | L-EGG-C FEM                   | 80.0         | •4      | 40.0 -<br>40.0         | 4.0               | .000    | .000     | -604-          | •••            | .0001  | 0       | .00       | .61               |
| ONA SP.           | 7-JUVENILE                    | 1160.0       | 10.6    | 1040.0                 | 206.1             | - 251   | .000     | .004           | .00<br>.01     | .0000  | .0000   | .01       |                   |
| DNA SP.           | B-ADULT                       | 120.0        | .0      | 2440.0<br>120.0 -      | 8.5               | .004    | .000     | .080           | .00            | .0000  | 0       | .00       |                   |
| UNA SP.           | A-JUV+AQULT                   | 6453.3       | 32.4    | 120.D<br>40.0 -        | 169.1             | .296    | .001     | .004           | 10,            | .0001  | .0000   | .04       | •19 · · ·         |
| UNA SP.           | C-J/A NOSEK                   | 1000.0       | 5.0     | 1000.7                 | +7.7              | .024    | .000     | .067           | .00            | .0001  | .0000   | •01       | •02 <sup>°°</sup> |
| UNA GUTTATA       | L-EGG-C FER                   | 86.0         | .4      | 840.0<br>80.0 ~        | 5.7               | .004    | •000     | .004-<br>.004- | ÷00            | .0001  | 0       | •00       | •00               |
| ONA GUTTATA       | 0-20003                       | 160.0        | . 1     | 160.0 -                | 11.J <sup>~</sup> | *019    | •000     | -015-<br>.UIA  | .00            | .0001  | 0       | +00       | • 01              |
| ONA RUSTICA       | S-ADULT                       | 2560.0       | 12.9    | 40.0 -<br>1760.0       | 120.7             | - 06 G  | .000     | •u04-<br>•010  | .00            | .0001  | .0000   | •01       | 4                 |
| ONA PUSTICA       | A-JUY+AQULT                   | 10560.0      | >3+1    | 3520.0 -<br>7040.0     | 555.8             | .080    | .000     | • D16-         | .00            | .0000  | .0000   | .05       | . 05              |
| DNA RUSTICA       | C-J/A NOSEX                   | 600.0        | 3.0     | +0.0 -                 | 34.3              | .028    | .000     | •004-<br>•014  | .00            | .0001  | .0000   | •00       | • əz              |
| INA RUSTICA       | L-EGG-C FEM                   | 2560.0       | 12.9    | 1120.0 -               | 124.0             | .032    | .000     | .016           | .00            | .0000  | .0000   |           | +02               |
| UNA AFFINIS       | B-ADULT.                      | 0+0+0        | 1.2     | 240.0                  |                   | 4064    |          | 004            |                | .0000  | ···     |           |                   |
| GNA AFFINIS       | C-1/4 NOSEX                   | 120.0        | .6      | 840.0<br>120.0 -       | 8.5               | .004    | .000     | .064           | .00            | .0000  | ō       | .00       | 0                 |
| ONA QUADRANGULA   | L-EGG-C FEM<br>PIS            | 520.0        | 2+6     | 120.0                  | 34.1              | • 02 0  | .000     | .004-          | .00            | .0001  | .0000   | .00       | •01               |
| ONA JUAURANGULAI  | B+ADULT<br>PIS<br>Could NOS M | 80.0         | .4      | 400.0<br>80.0 -        | 5.7               | .004    | .0.0     | .016           | 0              | .0001  | o       | •••       | .00               |
| YUUPUS SP.        | C+J/A NGSEK                   | 46.0         | • 4     | 60.0<br>40.0 -<br>40.0 | 7.8               | .04     | .000     | .004-<br>.004- | .00            | .0001  | 0       | •00       |                   |
| YUJRUS SP.        | d-ADULT                       | 40.0         | • 4     | 40.0 -<br>40.0         | 2.0               | • 00 4  | .000     | . UC4-         | ••0            | +0001  | ٥       | .00       | •00               |
| YUURUS SP.        | L-EGG-C FEM                   | 40.0         | ••      | 40.0 -<br>40.0         | 2.6               | .004    | .000     | .004-          | .00            | .0001  | 0       | .00       | .00               |
| YDORUS SPHAERICI  | US<br>8-ADULT                 | 2443.3       | 24.5    | - 0.04<br>40.005       | 159.2             | +417    | .002     | -004-<br>-746  | .01            | .0001  |         | .03       | +26               |
| HYDTHUS SPHAERICI | T_JUV+ADJLT                   | 700.0        | 1.0     | 200.0 -<br>200.0       | 14.7              | • 004   | .0-0     | .004-<br>.004  | .00            | .0300  | Ó       | *Ûu       | •00               |

٠

•

1 **4** 1

.

• •

...

# LPIBLNTHIC PLANKTUN ANALYSIS

### SHMMARY TABLE, PAGE 11

.

----

| ORGANISH NAME      |                | •        | NUMBERSA | /#**3    | •      | bet.   | WE IGHT, | GRAMS/M#+:     | 3    | • £¥6. | 8107255 | · PERCEN | TAGËS |   |
|--------------------|----------------|----------|----------|----------|--------|--------|----------|----------------|------|--------|---------|----------|-------|---|
| PARTS CODE         | LH-STAGE       | + TOTAL  | HEAN     | PANGE    | s.n.   | TÜTAL  | PEAN     | RANGE          | S.O. | • NEAN | ٢.٥.    | + DANCE  | MASS  |   |
| CHYDERUS SPHAERICU | S              | 280.0    | 1.4      | +0.0 -   | 10.2   | +010   | -00C     | .604-          | .00  | .0001  | .0000   | .00      | .01   |   |
| CHYDURUS SPHAERICU | 5<br>1         | +00.0    | 2.0      | 40,0 -   | 9.6    | .036   | .000     | .004-          | • 00 | .0401  | .0000   | .00      | • 02  |   |
| LEYDIGIA SP.       | Col/A NOSE1    | 40.U     | • 2      | 40.0 -   | 5.0    | .004   | .000     | .004-          | • u0 | .0001  | 0       | .00      | .00   |   |
| LEYDIGIA QUADRANGU | LARIS          | +80.0    | 2.4      | 40.0 -   | 25.0   | .032   | .000     | .004-          | .00  | .0001  | •0000   | .00      | .02   |   |
| LEYDIGIA QUADRANGU | LARIS          | 40.0     | • 2      | 40.0 -   | 2.0    | .04    | .000     | .004-          | •00  | .0001  | 0       | .00      | + 00  |   |
| PSEUDOCHYDDRUS GED | BOSUS          | 40.0     | • 4      | 40.0 -   | 2.8    | .004   | .000     | .004-          | •00  | .0001  | ` 0 `   | •00      | .00   | • |
| PSEUDRCHYDORUS GLO | 805US          | 206.0    | 1.0      | 40.0 -   | 11.7   | .020   | •000     | .004-          | • 60 | .0001  | 0       | .60      | •61   |   |
| MUNOSPILUS DISPAR  |                | 246.0    | 1.2      | 40.0 -   | 34.4   | + 00 8 | .000     | .004-          | •00  | .0001  | .0061   | .00      | .01   |   |
| NUNGSPILUS DISPAR  | INFAGAC FEM    | 40.0     | •2       | 40.0 -   | 2.0    | +004   | .000     | .004-          | •00  | .0001  | Ō       | .00      | • 00  |   |
| ALONELLA SP.       | Ze HIVEN TI S  | aQ.Q     | -4       | 80.0 -   | 5.7    | .604   | .005     | .000-          | .00  | .0001  | 0       | •00      | .01   | _ |
| ALONELLA SP.       |                | 6880.0   | 34.6     | +0.0 -   | 323.7  | . 660  | .000     | +1054-         | .00  | .0000  | .0000   | .04      | . 64  |   |
| ALONELLA SP+       |                | 119520.0 | 000.0    | 3720.0 - | 2589.2 | • 32 8 | . 402    | .004-          | + 02 | .0000  | .0000   | . 67     | • 21  |   |
| ALOHELLA SP.       |                | 31840.0  | 160.0    | +0.0 -   | 1481.0 | .244   | .001     | .004-          | .01  | .0000  | .0000   | +18      | .15   | • |
| PLEURNXUS DENTICUL | ATUS<br>Adabut | 80.0     | • 4      | 80.0 -   | 5.7    | 004    | .000     | .004-          | .00  | .0001  | 0       | .00      | .00   |   |
| CAMPTICERCUS RECTI | ROSTALS        | 40.0     | . 2      | +0.0 -   | 2.8    | .004   | .000     |                | .00  | .0001  | 0       | •00      | •00   | • |
| US TRACIDOA        | T-JUVEN ILE    | a0.0     | .4       | 40.0 -   | 4.0    | .008   | .000     | .004-          | •00  | .0001  | Ő       | .00      | .01   |   |
| USTRAC OD A        | Calla MOSET    | 500.0    | 2.5      | +0.0 -   | 37.0   | .008   | 000      | .004-          | .00  | .0001  | .0001   | •00      | .01   |   |
| PODDCOPA           | Zelliv, N II 6 | 102440.0 | \$29.6   | 40.0 -   | 1994.7 | .728   | .004     | .004-          | .61  | .0000  | .0000   | .59      | .40   |   |
| P00000PA           | H-ADULT        | 280.0    | 1.4      | 40+0 -   | 10.9   | .020   | . ຄິຍ 0  | +00+<br>+00+   | .00  | .0001  | .0000   | .00      | •01   | • |
| PUDOC UPA          |                | 5120.0   | 25.7     | 5120.0 - | 302.9  | .016   | +000     | +016-<br>-016- | •00  | .0000  | 0       | .01      | •01   |   |
| PODLENPA           | Cella NOSLE    | 2420.0   | 14.3     | 40.0 -   | 61.0   | •121   | + 00 1   |                | .00  | .0001  | •0000   | •02      | .08   | • |
| PUDOC 0 PA         | 1 #F66=6 FF4   | 16.0     | .1       | 16.0 -   | 1.1    | •00 Z  | .000     | .002-          | .00  | .0001  | 0       | .00      | •00   |   |
| EUCYPRIS SP.       | N-ADIN T       | 2850.0   | 14.3     | 2840.0 - | 201.3  | .320   | .002     | •320-          | .02  | +0001  | · 0     | +02      | • 20  |   |
| EUCYPRIS SP.       | CALLA NOSCA    | 200.U    | 1.0      | 200.0 -  | 14.2   | .004   | .000     | .004-          | .00  | .0000  | 0       | .00      | •00   |   |
| CYPRIA SP.         | L-HAR HUJEK    | 360.0    | 1.1      | 360.0 -  | 25.4   | .012   | .0u0     | -012-          | .00  | .0000  | o       | .00      | .01   | 1 |

.

.3

.

L 

٠

# CP1884501C PLANKFON ANALYSIS

#### SUNHARY TABLES PAGE 12

× 1

| OKGANISH NAME       |                        | :         | NUMBER  | 5/#++3            |         | :      | WEI WEIGH | T,GRAMS/N++    | 3      | + AVG.      | BIÚRASS      | • PERCEN                                 | ITAGES       |
|---------------------|------------------------|-----------|---------|-------------------|---------|--------|-----------|----------------|--------|-------------|--------------|------------------------------------------|--------------|
| PARIS CODF          | LH-STAGe               | E + TUTAL | HEAN    | RANGE             | \$.0.   | + TOTA | L MFAN    | RANGE          | 5.0.   | •<br>• PEAN | 5.0.         | <ul> <li>ABUN-</li> <li>DANCE</li> </ul> | #10-<br>MASS |
| CTPPIA SP.          | L-EGG-C FER            | 40.0<br>1 | •       | 2 40.0 -<br>40.0  | 2.6     |        | 04 .00    | 0 .004-        | .00    | .0001       | 0            | .00                                      | . 00         |
| TTANOCATHERE CA     | 0NT<br>0-ADULT         | 480.0     | 2.1     | 40.0 -<br>200.0   | 20.4    | • •    | 16 .000   | 0.04-          | •00    | 40001       | .0000        | .00                                      |              |
| LIMNOCYTHERE SP.    | 7-JUVEN ILE            | 10773-3   | 84.3    | 3333.2            | 429.0   | • 2    | 25 .001   | 2 .004-<br>100 | .01    | .00u0       | .0000        |                                          | +14          |
| LINNUCYTHERE SP.    | 8-ADULT                | 349966.0  | 10.0    | 3120.0 -          | 277.3   | .2     | 74 .001   | 1 .002-        | .01    | .0000       | .0000        | .06                                      | • 17         |
| LEMNUCYTHERE SP.    | A-JUV+ADULT            | 32440.0   | 163.0   | 217080.0          | 10133.1 | 2.4    | 48 .012   | 2 •004<br>•968 | •78    | +0000       | .0000        | 2.14                                     | 1.55         |
| CANDUNA SP.         | C-J/A NOSEX            | 20520.0   | 103.1   | 8320.0            | 197- 9  | •8     | 00 .004   | .094-          | •03    | *0301       | .0000        | .10                                      | • >1         |
| CANDONA SP.         | 7-JUVENILE             | 6200,0    | \$1.7   | 16400.0           | 141.7   | 1.0    |           | 1.004-         | •11    | • 0000      | •0000        | +11                                      | 1.06         |
| CANDONA SP.         | U-ADULT                | 8520.u    | 42.8    | 1200.0            | 237.3   | • •    | vo .uuz   | .004-          | +01    | .0001       | .0000        | .03                                      | + 25         |
| CANDONA SP.         | A-JUV+ADULT            | 6760.0    | 34.0    | 1760.0<br>10.0 -  | 189.9   | .2     |           | •120           | •01    | .0001       | +0000        | .05                                      | + 31         |
| COPEPNDA            | C-J/4 NOSEX            | + .3E+07  | 16907.4 | 2400.0<br>40.0 -  | 86246.7 | 6.10   | .031      |                | .12    | -0001       | +0001        | •04                                      | +18          |
| CJPEPODA            | 6-008-80-103           | 16520.0   | 43.0    | 890000.0          | 1168.2  | . 42   | 0 .000    | 1.600          | .00    | .0001       | .0003        | 10.87                                    | 3.69         |
| CUPEPDDA            | N-+66 CASE             | 1480.0    | 7. 1    | 164±0,0           | 32.4    | .04    | 5 .000    | .016           | .00    | -0001       | .0000        | •UV                                      | •01          |
| CALANIJIDA          | 2-NAUPL TUS            | 4520.0    | 22.7    | . 320.0<br>du.j - | 218.5   | .03    | 2 .000    | 016            | .00    | .0000       | .0000        |                                          |              |
| CALANOIDA           | C-J/A NOSEX            | 86.0      | .4      | 40.0 -            | 4.0     | •00    | e .000    | .016<br>.004-  | .00    | .0001       | 0            |                                          |              |
| CALANGIDA           | .F-COPEP3010           | o68106.7  | 3357.3  | 40.0 -            | 16762.4 | 4+37   | 7 .027    | +904<br>+604-  | .12    | .0000       | .0000        | 3.74                                     | 2.76         |
| PARACALANUS SP.     | C-J/A NOSEX            | 150.0     |         | 40.0 -            | 6.3     | .00    | 8 .000    | - 1.600        | .00    | .0001       | .0000        | +00                                      | .01          |
| ALAUSUCALANUS ARCU  | ICORNIS<br>F-CUPEPUDID | 320.0     | 1.6     | 320.0 -<br>320.0  | 22.7    | • 01   | £ .000    | .016-          | .00    | .0001       | ···          | .00                                      | .01          |
| SCOLECTIVALANUS SP. | 8-ADULT                | 160.0     | .4      | 160.0 -           | 11.3    | • 01   | é ,00n    | +016-          | .00    | .0001       | ···· 0 ··- · |                                          | .01          |
| HETPIDIA AUCCUC     | 8-ADULT                | 1.6       | •0      | 1.5 -             | •1      | .00    | 000       | NEG.           | • 00 i | .0001       | 0            | .00                                      |              |
| CENTROPAGES SP      | 8-ADULT                | 40.0      | • 2     | 40.0 -<br>40.0    | 5.9     | • 00   | 4 .000    | - 604-         | .00    | .0001       | ۰.           | .00                                      |              |
| CENTROPAGES ANDONE  | C-J/A NOSEX            | 46.0      | •2      | 40.0 -            | °.8     | • 00   | 4 .000    | +504-          | .00    | .0001       | 0            | .00                                      |              |
| CENTROPAGES ANDONI  | H-ADULT                | 120.0     | •0      | 120.0 -           | 4.5     | .00    | 000.      | -008-<br>-008  | .00    | .0001       | 0            | .00                                      | .61          |
| DIAPTONUS SP.       | F-CUPEPUDID            | 120.0     | • •     | 40.0 -            | 6.3     | .00    | •000      | .004-          | .00    | .0001 .     | 0000         | .00                                      | •01          |
|                     | 8-ADULT                | 0433.3    | 34.8    | 40.0 -<br>760.0   | 112.2   | .39    | .002      | +UN4~<br>+067  | .01    | .0001 .     | 0000         | .04                                      | .25          |

•

#### SUMMANY TABLER PAGE 13

.

× '

.

\_\_\_\_

£

| RGANISH NAME     |                  | •            | NUMBERSI    | 1+++3              |                | WET    | WE1GH1, | GRANSZM++       | 9    | . AVG. | 6 LOMA 55 | + PLRCEN | TAGES        |
|------------------|------------------|--------------|-------------|--------------------|----------------|--------|---------|-----------------|------|--------|-----------|----------|--------------|
| PAFTS CUDE       | LH-STAVE         | *<br>* TOTAL | 4 E A14     | RANGE              | S.n.           | TOTAL  | MFAN    | RANGF           | 5.0. | MEAN   | 5.6.      | DANCE    | MASS         |
| LANTINUS SP.     |                  | 7208.0       | 36.2        | 160.0 -            | 133.3          | ,146   | .001    | +004-           | .00  | .0000  | .0000     | .04      | . 69         |
| LAPTONUS SP.     | C-J/A NOSEX      | <b>046.0</b> | 3.2         | 40.0 -             | 32.1           | .024   | .000    | •004-<br>•016   | .00  | .0001  | .0000     | .00      | .02          |
| LAPTONUS SP.     | F-COPEPODIO      | 17076.0      | 340+3       | 40.0 -<br>8400.0   | 913.6          | 1,530  | •00a    | .004-           | , 02 | .0000  | .0000     | .44      | .97          |
| APTUMUS FRANCISC | B-ADULT          | 120.0        | •0          | 40.0 -<br>80.0     | 6.3            | .008   | *0u0    | + 604-<br>+ 604 | •00  | .0001  | .0000     | .00      | .GL -        |
| APTIMUS ASHLANDI | B-ADULT          | 4106.7       | 20.0        | 40.0 -<br>840.0    | 110.5          | , 221  | .001    | .004-           | .01  | .0001  | .0000     | .02      | .14          |
| APTONUS ASHLANDI | A~JUV+ADULT      | 2440.0       | 12.3        | 2440.0 -           | 173.0          | .040   | .000    | .040-           | .00  | .0000  | 0         | .01      | .63          |
| ISCHURA NEVADENS | A-AUULT          | 40,0         | +2          | 40.0 -<br>40.0     | 2.6            | .004   | .000    | 004-            | • 00 | .0001  | •••••     | •00      | .00          |
| RYTENDRA SP.     | 7-JUVENILE       | 600.0        | 3.0         | 600.0 -<br>600.0   | 42.5           | .040   | .000    | .040-           | .00  | .0001  | 0         | .00      | - 03         |
| PTIENJKA SP.     | B-ADULT          | 2200.0       | 4143<br>A A | 1120.0             | 42.0           | . 004  | -000    | .040            | .00  | .0001  | .0001     | .01      | . U J        |
| FIICAUNA 384     | F-CUPEPOD10      | 1000-0       | 314         | 920-0              | 6061.1         | <br>9  | .049    |                 |      | .0000  | .0000     | 1.74     | 6.21         |
| RYTENORA AFFINIS | B-ADULT          | 12240-0      | 61.7        | 55333.3            | 419.4          | . 360  | .002    | 2.000           | .01  | .0000  | .0000     | 507      | .2           |
| RYTENJRA AFFINIS | A-JUV+ADULT      | 40.0         |             | 4440.0             | 2.8            | . 904  | .000    | .160            | .00  | .0001  |           | .00      | .00          |
| RYTEMORA AFFINIS | C-J/A NOSEX      | + .1E+07     | 5488.8      | 40.0<br>40.0 -     | 15477.9        | 10.036 | .050    | .004            | ,15  | .0000  | .0000     | 6.12     | 6.34         |
| RYTEMURA AFFINIS | \$-COPEPJ010     | 160.0        | 1.0         | 138000.0           | 22.8           | .026   | .000    | 1.333           | .00  | .0001  | .0000     | .00      | .01          |
| ATTENDRA AMERICA | L-EGG-C FEN      | 2520.0       | 12.7        | 320.0<br>440.0 -   | 149.4          | .020   | .000    | .016            | .00  | .0000  | .0000     | .01      | • <b>u</b> l |
| ARTIA SP.        | F-CUPEPODID      | 4480.0       | 62.5        | 2040.0<br>4480.0 - | 317.+          | .016   | .000    | .016            | .00  | .0000  | 0         |          | ••1          |
| ARTIA SP.        | A-JUV+ADULT      | 80.0         | .4          | 4480.0             | 5.7            | . 004  | .000    | .016            | .00  | .0001  | 0         | .00      | .00          |
| ARTIA SP.        | C-J/A NOSEX      | 2120.0       | 10.7        | 0.0<br>- 0.        | 105.0          | .04#   | .000    | +004<br>NFG+    | .00  | .0001  | .0000     | .01      | .03          |
| ARTIA CLAUSI     | F-CUPEPUBID      | 1446.0       | 7.4         | 40.0 -             | 60.4           | . 02 4 | .001    | -004-<br>-004-  | .00  | .0001  | .0000     | .01      | . 62         |
| AKTIA ČLAUSI     | a-apul I         | 240.0        | 1.2         | 240.0 -            | 17.0           | .004   | .000    | .604-           | .00  | .0000  | 0         | .00      | .00          |
| AFTIA CLAUSE     | F-CUPEPOATA      | +60.0        | 4.0         | 40.0 -             | 42.0           | .016   | .030    | .004-           | .00  | .0000  | .0000     | .01      | •01          |
| ARTIA LUNGLEEMIS | U-ADULT          | 440.0        | 2.2         | 40.0 -             | 18.5           | .016   | .000    | .004-           | .00  | .0001  | .0000     | .00      | .01          |
| APTER LUNGERENS  | 5<br>F-CuPEPapib | 46.0         | •5          | 40.0 -<br>40.0     | 2.A            | .004   | .000    | .004-           | .00  | .0001  | 0         | .00      | • 01         |
| KPACTICUIDA      | 2-HAUPLIUS       | 6760.0       | فا و و و    | 40.0 -<br>4320.0   | 334 <b>.</b> A | ,124   | .001    | .004~<br>.⊉⊵≒   | .00  | .0001  | .0000     | .04      | .00          |

L

---

-----

.

.

.

•

----

EPTULITUTE PLANKTON ANALYSIN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### SUNHARY TABLES PAGE 14

. )

| URGANISH NAME      |                    | :        | NUMBER | 5/2+43             |         | ٠   | WET   | NF IGHT, | GFAN5/N++;      | •    | + AVG.    | 810M455  | • <b>PERCEN</b> | TAGES               |         |
|--------------------|--------------------|----------|--------|--------------------|---------|-----|-------|----------|-----------------|------|-----------|----------|-----------------|---------------------|---------|
| PAPTS CUDE         | LH-STAG            | ATLT +   | HE AL  | RANGE              | 5.0.    |     | TOTAL | MFAN     | RANGÉ           | S.D. | +<br>HEAN | \$.0.    | ABUN-<br>DANCE  | BEC-<br>MASS        |         |
| HARPACTICUIDA      | 0-ADULT            | 1760.0   | B.4    | 40.0 ·             | - 49.7  |     | .100  | .001     |                 | .00  | .0001     | +0000    | .01             | .06                 |         |
| HARPACTICOLDA      | C+J/A NOSED        | 2173.3   | 10.4   | 40.0 -             | - 54.5  |     | .141  | .001     |                 |      | .0001     | .0000    | . 01            |                     |         |
| HARPACTICOIDA      | E-CUPPPODIC        | 50133.3  | 2>1.9  | ) 40.0 -           | 1458.6  |     | 1.164 | .006     |                 | •02  |           | .0000    | .28             |                     |         |
| HARPACTICUIDA      | L-FGG-C FFM        | 2+0.0    | 1.2    | 40.0 -             | 12.0    |     | . 024 | .000     |                 | 00   | .0001     | ·- o · · |                 |                     | ·-· ·-· |
| HARPACTICUIDA      | M-++ GG CASE       | 33333.3  | 167.5  | 40.0 -             | 1095.9  | • • | . 719 |          |                 | .03  | .0000     | .0000    | .19             |                     |         |
| SCOTTOLANA CANADEI | NS ES<br>B+ANUL T  | 360960.0 | 1013.9 | 40.0 -             | 9659.3  |     | 5.427 | .027     | +440.           | .15  | .0000     | .0000    | 2.02            |                     |         |
| SCOTTOLANA CANADEI | NS15               | 10>640.0 | 530.9  | 200.0 -            | 6288.4  |     | .500  | .003     | 1.649.<br>.004- | 03 . | .0000     | - 0000 - | <br>            |                     |         |
| SCOTTOLANA CANADER | ISIS               | 1040.0   | 8.2    | 60320.0<br>60.0 -  | 68.6    |     | .028  | .000     |                 | .00  |           | .0000    |                 |                     |         |
| SCOTTULANA CANADER |                    | * +1±+07 | 5275.3 | 800.0<br>40.0 -    | 21956.2 |     | 5.723 | .029     | .008            | .13  | .0000     | .0000    |                 |                     |         |
| SCUTTULANA CANADER | 15[5<br>1966=0 664 | 12360.0  | 62.1   | 40.0 -             | 320.9   |     | .672  | .003     | 1.600           | • 02 | .0001     | .0000 "  |                 | 3161                |         |
| SCUTTULANA CANAPEN | (SIS               | 17726.0  | 69.4   | 100.0 -            | 816.3   |     | .080  | .000     | .004-           | .00  | .0000     |          |                 | •••<br>••••         |         |
| SCOTTOLANA CANADEN | ISIS               | 320.0    | 1.6    | 9260.0<br>320.0 -  | 27.7    |     | .J16  | .000     | .020<br>.016-   | .00  | .0001     |          |                 |                     |         |
| CANUELLIDAE        | 7                  | 5200.0   | 20.1   | 320.0<br>5200.u -  | 368.6   |     | .040  | .000     | .016            | .00  | .0000     |          | ~ ^7"           |                     |         |
| ECTINUSUMATIDAE    | 4-4042412E         | • .1E+07 | 7996.3 | 5200.0<br>40.0 -   | 64217.1 |     | 7.725 | .039     | +940            |      |           |          |                 | •03<br>•••••••••••• |         |
| ECTINOSUMATIONE    | 4- 100 L F         | + .1E+07 | 6466.5 | 757333.3           | 42427.8 |     | 3.789 | .019     | 4.067           | .15  | .0000     | 0000     |                 | 4.66                |         |
| ECTINOSOMATIDAE    | Calle HOLEY        | 400.v    | 2.0    | 494000.0<br>40.0 - | 13.4    |     | .024  | .000     | 2.000           | - 00 | .0001     | 0000     | 1.21            | 2.34                |         |
| ECTINOSOMATIDAE    |                    | 2480.0   | 14.5   | 160.0<br>40.0 -    | 87.9    |     | .196  | .001     | +404.           |      |           | - 0000   |                 | •UZ                 |         |
| ECTIHOSOMATIDAE    |                    | 138200.0 | 694.5  | 986.7<br>40.0 -    | 5400.5  |     | 1.601 | .009     | -083<br>-005-   | .04  | .0001     |          | .02             | •12                 |         |
| HICKOSETELLA SP.   | L-LOU-L FER        | 480.0    | 2.4    | 72000.0<br>80.0 -  | 28.9    |     | .048  | .000     | -400            |      |           |          |                 | 1.01                |         |
| LCTINDSJMA SP.     | 0-ADULI            | 13760.0  | a¥+1   | 400.n<br>40.0 -    | 437.0   |     | .124  | .001     | .040            |      | 10001     |          | •00<br>         | .03                 |         |
| ECTINOSOMA SP.     | 9-ADULT            | 120.0    | ••     | 4490.0<br>40.0 -   | 4.3     |     | .012  | .000     | +020            | .00  |           | .0000    | •08             | .00                 |         |
| ECTINDSUMA SP.     |                    | 1030.0   | 5.0    | 80.0<br>40.0 -     | £7.8    |     | .026  |          | .008            | .00  | .0001     | 0        | .00             | .01                 |         |
| HARPACTICUS SP.    | L-LUG-C FER        | 46.0     | •2     | 80.0 -             | 2.8     |     | .004  | .000     | .036            | .00  | .0001     | .0001    | •01             | • 02                |         |
| TACHIDIIGAE        | C-374 NOSCX        | +6.0     | .2     | 40.0<br>40.0 -     | 2.8     |     |       |          |                 | .00  | .0061     | 0        | .00             | .00                 |         |
| TACHIDIIDAE        | U-ADULT            | ¥4000.0  | 472.4  | 40.0               | 6661.4  |     | - 100 | 1000     | .004            | .00  | .0001     | Ô        | .00             | •00                 |         |
|                    | A-JIIV+AUULT       |          | -      | 94040.0            |         |     |       |          | .100-           | •ot  | ,0010     | 0        | .53             | .06                 | ł       |

B-15

EPIGLATHIC PLANKTON ANALYSIS

### SUMMAPY TABLER PAGE 15

\_\_\_\_

 $\mathbf{x}^{(1)}$ 

•

.

.

|                                      |          | NUMBERS | /                |                  | : | WET   | WEIGHT. | GRAMS/MAN        | 3    | + AVG.      | BLUMASS  | PERCEN             | TAGES        |          |
|--------------------------------------|----------|---------|------------------|------------------|---|-------|---------|------------------|------|-------------|----------|--------------------|--------------|----------|
| PAPTS CODE LH-STAGE                  | * TOTAL  | HLA'I   | RANGL            | S.D.             | • | TOTAL | MEAN    | PANGE            | 5.0. | +<br>+ NEAN | 5.0.     | * ABUN-<br>* DANCE | BIC-<br>MASS |          |
| TACHIDIIDAE<br>F+COPEPOUID           | 3613.3   | 16.2    | 40.L -           | L23.6            |   | .101  | .001    | +604-            | ,00  | .0001       | .6860    | .02                | .06          |          |
| TACHIDIIDAE                          | 16000.0  | 60.4    | 10000.0 -        | 1134.2           |   | .100  | .001    | 100-             | .01  |             |          | .09                |              |          |
| NICRUARTHRIDION SP.                  | 60.0     | ••      | 80.0 -           | 5.7              |   | .004  | .000    | -100<br>-004-    | 00   | +0001       | 0        | .00                | .00          |          |
| ALCENARTHRIDION LITTORALE            | 181833.3 | 913.7   | 40.0<br>40.0 -   | 9114+6           |   | 2.795 | .014    | +005.<br>+005-   | .12  | .0001       | .0000    | 1.02               | 1.77         |          |
| SCRUARTHRIDION LITTORALE             | 254666.7 | 1279.7  | 200.0 -          | 10726.1          |   | .357  | .002    | . 1.600.         | .01  | 0000        | .0000    | 1.43               | - 21         |          |
| ALCROARTHRIDIUN LITTORALL            | 200.0    | 1.4     | 40.0 -           | 13.0             |   | .028  | .000    | .067<br>.004-    | .00  | .0001       | 0        | .00                | .02          |          |
| SCROARTHEIDION LITTOPALE             | 25693.3  | 129.1   | 40.0 -           | 1126.0           |   | +149  | .001    | .016<br>.004-    | .00  | .0001       |          | 14                 | .09          |          |
| ICRUARTHRIDIUN LITTORALE             | 104066.7 | 527.0   | 40.0 -           | 63 09 <b>.</b> R |   | 1.9/1 | +010    | 040              |      | .0001       | .0000    | .59                | 1 . 21       |          |
| ACHIDIUS SP. 8-ADULT                 | 960.0    | 4.9     | 960.0 -          | 68.1             |   | .016  | .000    | . 1.600<br>.016- | .00  | .0000       | 0        | +01                | .01          |          |
| ACHIDIUS SP. E+COPEPROTO             | 300.0    | 1.0     | 40.0 -           | 22.8             |   | .020  | 000     | 015              | .00  | .0001       | .0000 ~~ | .00                | .61          |          |
| ACHIDIUS TRIANGULARIS                | 119000.7 | 601.3   | 40.0 -           | 3373.7           |   | .821  | .004    | 016              | .02  | .00.0       | .0000    | 167                | . 52         |          |
| ACHIDIUS TRIANGULARIS                | 224973.3 | 1180.8  | 300.0 -          | 7483.1           |   | .577  | .003    | .200<br>.404~    | .02  | .0000       | .0000    | 1.32               | 36           | -· •· •  |
| ACHIDIUS TRIANGULARIS<br>F-COPEPODID | 29226.7  | 140.9   | 80.0 +           | 1104.8           |   | .187  | .001    | .150.<br>.004-   | .01  | .0000       |          | .10                | . 12         | <u> </u> |
| ACHIDIUS IRLANGULARIS                | 59253.3  | 297.6   | +0.0 -           | 1631.7           |   | .333  | .002    |                  | .01  | .0000       | .0000    | .33                | .21          | ·        |
| ACHIDIUS TRIANGULARIS                | 1600.0   | P.0     | 160.0            | 52.7             |   | .054  | .000    | .100<br>.008-    | .00  | .0000       | .0000    | .01                | .04          |          |
| ACHIDIUS DISCIPES                    | 28240.0  | 141.9   | 40.0 +           | 1212.0           |   | .048  | .000    | .016             | .00  | .0000       | .0000    | 16                 | . 00         | •        |
| ACHIDIUS DISCIPLS                    | 4>240.0  | 227.3   | 2360.0 -         | Z1 67 . B        |   | .180  | .001    | .024.            | .01  |             | .0000    | .25                |              |          |
| ACHIDIUS DISCIPES                    | 80. y    | .4      | 40.0 -           | 4.0              |   | .008  | .000    | .160             | .00  | .0001       | ۰ ۵      | . 00               | .01          |          |
| ACHIDIUS DISCIPES                    | 560.u    | Z.8     | 80.0 -           | 34.5             |   | .024  | .000    | •U04<br>•004-    | .00  | .0000       | .0000    | .00                | . 41         |          |
| ACHIDIUS DISCIPES                    | 5640.0   | 28.3    | 40.0 -           | 191.6            |   | +042  | ,000    | .016<br>.004-    | .00  | .0000       | .0000    | . 03               | .06          | -        |
| AUPHONT IVAE 4-ME GAL DP             | 640.0    | 3.2     | 640.0 -          | 42.4             |   | .01t  | ,uan    | .020<br>.016-    | .00  | .0000       | o        | .00                | . 01         |          |
| ADPHINTIDAE<br>6-ADULT               | a4271.1  | 423.5   | 40.0 -           | 1796.6           | : | 364.6 | .007    | +016             | . 02 | .0001       | .0000    | . 47               | .90          |          |
| ADPHONT LUAE                         | 18493.3  | 195.0   | 940.0 -          | 2087.7           |   | . 222 | .001    | .200             | .01  | .0000       | .0000    | .26                | .15          |          |
| C-J/A NOSEX                          | 2686.0   | 11.5    | 40.0 -           | 144.7            |   | .099  | .000    | .160<br>.004-    | .00  | .0001 .     | .0000    | .02                | . Co         |          |
| AUPHIDUTIDAE F+LOPEPODIO             | 14240.0  | 71.5    | 40.0 -<br>7480.0 | 241.2            |   | .460  | \$00.   | -067<br>-004-    | .07  | .0001       | 0000     | 50.                | . 24         |          |

J. 🖂

Ł

**B-1**6

.

EPIBLAINIC PLANKTON ANALYSIS

.

,

1

SUMMARY TABLES PAGE 14

.

ж.

| DRGANISM NAME                     | :               | NUMBERS    | / M + + 3              | •      | WET    | <b>WEIGHT</b> | GRANS/M++     | 3             | • AVG. | 8104455         | • PERCEN                                 | TAGES        |
|-----------------------------------|-----------------|------------|------------------------|--------|--------|---------------|---------------|---------------|--------|-----------------|------------------------------------------|--------------|
| PAPTS CODE Lo-S                   | TAGE + TUTAL    | MEAN       | PANGE                  | 5.0.   | TOTAL  | ₽EAN          | RAFGE         | 5.0.          |        | S.P.            | <ul> <li>AdUN-</li> <li>DANCE</li> </ul> | 01C-<br>MASS |
| ADPHONT ID AE                     | 16316.<br>: FEM | 0 82.0     | 40.0 -<br>4010.0       | 433.6  | .403   | .002          | .004-         | .61           | .0001  | .0000           | .09                                      | . 25         |
| AGPHONTIDAE<br>U-MATIN            | 240.<br>IG PR   | 1,2        | 80.0 -                 | 12.7   | .608   | .000          | +004-         | •00           | .000u  | .0000           | .00                                      | .01          |
| NYCHOCAMPTUS MOHAMMED<br>D-Velig  | 200.1           | 0 1.0      | 200.0 -                | 14+2   | .04    | .000          |               | +UD           | .0000  | 0               | .00                                      | . CO         |
| NYCHOCAMPTUS HOHANNED<br>d-ADULT  | 7880.           | 39.6       | 40.0 -<br>5200.0       | 410,4  | .040   | .000          | .604-         | .00           | .0000  | .0000           | .04                                      | .03          |
| NYCHOCANPTUS NUHAMMED<br>F=CUPEP  | 60010<br>0010   | ) 4+O      | 800.0                  | 56.7   | .01e   | .000          | .016-         | .00           | .0000  | 0               | .00                                      | .01          |
| NYCH-ICAMPTUS NUHARNED<br>L-LGG-C | 1040.4<br>FEM   | ) >+Z      | 80.0 -                 | 9.00   | .036   | .000          | .004-         | . 40          | .0000  | .0000           | +01                                      | . • 02       |
| NYCHOCANPTUS HUHANMED<br>U-MATIN  | 040+1<br>G PR   | 3.2        | 640.0 -                | 45.4   | •01e   | •000          | .016-         | ` <b>.</b> 00 | .0000  | 0               | .00                                      |              |
| YLLINDROPSYLLIDAE<br>#-ADULT      | 920.0           | ) <u> </u> | 320.0 -                | 27.7   | .008   | .000          | .008-         | .00           | .0000  | 0               | .00                                      | • 61         |
| YELINDROPSYLLIDAE<br>L-EGG-C      | 120.0<br>FEM    |            | 120.0 -                | 8.5    | .008   | .000          | .008-         | +00           | -0001  | 0               | .00                                      | .01          |
| ARALEPTASTACUS SP.<br>Ø-ADULT     | 45ad0.(         | 230.6      | 40.0 -<br>32000.0      | 2374.7 | - 740  | .004          | -004-         | .03           | .0000  | .0000           | •2•                                      | + 17         |
| ARALEPTASTACUS SP.                | 14160.0<br>FEN  | ñ 71.2     | 160.0 -                | 061.7  | 416    | 002           | .016-         | • 02          | .0001  | .0000           | .08                                      | •26          |
| ITOCRA SP.<br>B-ADULT             | 4080.0          | 23.5       | 40.0 -                 | 99.9   | •22 e  | .001          | .004-         | .04           | .0001  | .0000           | .03                                      | .14          |
| TOCRA SP. C-J/A N                 | 80.0<br>OSEX    | 4          | 80.0 -                 | 5.7    | .004   | .000          | .004-         | •00           | .0001  | ` o <sup></sup> | .00                                      | .00          |
| LTOCRA SP. L-EGG-C                | 360.0<br>FEN    | 1.8        | 40.0 -                 | 18.1   | .032   | .000          | .004-         | .00           | .0001  | .0000           | .00                                      | •02          |
| LETODIDAE<br>7-JUVEN              | 400+0           | 2.0        | 400.0 -                | 28.4   | .040   | +0U0          | .040-         | .00           | .0001  | ` 0 <sup></sup> | .00                                      | .03          |
| LETODIDAE<br>B-ADULT              | 80.0            | .4         | 40.0 -                 | 4.0    | . 00 P | .000          | .004-         | •00           | .0001  |                 | .00                                      | 10.          |
| LETODIDAE F-COPEP                 | 120.0           | · • •      | +0.0 -                 | 4.9    | +012   | .000          | .004-         | -00           | .0001  | 0               | .00                                      | .01          |
| INTERANNIA JADENSIS<br>6-ADULT    | 15155.0         | 76.7       | 40.0 -                 | 371.5  | . 57 4 | . v0 3        | .004-         | .01           | .0001  | .0000           | .08                                      |              |
| INTEMANNIA JADENSIS<br>A-JUV+A    | 3040.0<br>DUL T | 12.3       | 160.0 -                | 204.4  | • C2 C | .000          | .004-         | .00           | .0000  | .0000           | . 0 Z                                    |              |
| INTEMANNIA JADENSIS               | 05FX 680.0      | 3.4        | 40.0 -                 | 39.0   | + 05 6 | .000          | .004-         | 0             | .0301  | .0000           | .00                                      | 04           |
| WTEMANNIA JADENSIS<br>F-COFFP     | 120-0           | •6         | 40.0 -                 | f      | .612   | .000          | .004-         | • • • 0       | .0001  | ٥               | .00                                      | .01          |
| INTENANNIA JADEHSIS               | 1160.0          | 5.8        | 40.0 -                 | 36.5   | .096   | .00C          | .004-         | .00           | .0001  | .0000           | •01                                      | .06          |
| INTINCAMPTIDAE                    | 120.0           | • 6        | 120.0 -                | 8.5    | .004   | .000          | .040          | .00           | .0000  | 0               | .00                                      | .00          |
| INTHOCARPTIDAE                    | 40.J            | •2         | 40.0 -                 | 2.8    | .004   | .000          | .004          | د0.           | .0301  | o               | .00                                      | .00          |
| YUCAMPTUS SP. 8-ADULT             | 57413.3         | 200.5      | 40.0<br>- 0.04<br>0.04 | 1861.3 | .781   | .004          | .004<br>.004- | +02           | .0000  | .0000           | • 32                                     | .49          |
|                                   |                 |            | ********               |        |        |               | •100          |               |        |                 |                                          |              |

# EFIGENTHIC PLANETUR ANALYSIS

#### SUPMARY TABLE, PAGE 17

| RGANESH HAME       | I NASTRI C     | *<br>•   | NUMBERS/ | #++3<br>R+NGF      | •<br>•<br>• | WET<br>TOTAL | WE LGHT # | GRAMS/M++1<br>RAFGE | )<br>5.D. | + AVG.<br>•<br>• HFAN | BIUMASS<br>S.u. | <ul> <li>PERCEN</li> <li>ABUN+</li> <li>DANC</li> </ul> | FAGES<br>BIÙ≁<br>Mass |
|--------------------|----------------|----------|----------|--------------------|-------------|--------------|-----------|---------------------|-----------|-----------------------|-----------------|---------------------------------------------------------|-----------------------|
| FAF13 LOUC         |                | ******   |          |                    |             |              |           |                     |           |                       |                 |                                                         |                       |
| RYUCAMPTUS SP.     | A-JUV+A0JLT    | 43449.0  | 210.3    | 540.0 -<br>31000.0 | 2254.6      | .120         | .001      | .100                | .01       | •0000                 | +0000           | .24                                                     | .08                   |
| RYOCAMPTUS SP.     | CHALL NOSHY    | 320.u    | 1.0      | 40.0 ↔<br>160.0    | 13.2        | .076         | .000      | .04-                | .00       | .0001                 | .0000           | .00                                                     | .62                   |
| RYOCAMPTUS SP.     |                | 520.0    | 2.0      | 40.0 -<br>120.0    | 25.4        | .036         | .000      | ++04-               | .00       | 10001                 | .0000           | •00                                                     | +02                   |
| RYOCAMPTUS SP.     |                | 18506.7  | 93.0     | 40.0 -             | 560.0       | .520         | .003      | +604-               | .01       | .0001                 | .0000           | .10                                                     | . 33                  |
| ESOCHRA SP.        | 1-166-6 118    | 40.0     | .4       | 40.0 -             | 2.8         | .004         | .000      | .C04-               | •00       | .0001                 | ٥               | .00                                                     | •00                   |
| ESOCHRA LILLIJEBU  | 8-ADULT<br>RGI | 960.0    | 4.8      | 40.0<br>960.0 -    | 64.1        | .016         | .000      | .004                | .00       | .0000                 | ٥               | .01                                                     | .01                   |
| ESOCHRA LILLIJAROJ | 8-AQULT<br>RGI | 480-u    | 2.4      | 960.0<br>480.0 -   | 34.0        | .01 <i>t</i> | .000      | .016<br>.016-       | .00       | .0000                 | 0               | .00                                                     | •01                   |
|                    | L-EGG-C FEN    | 960.0    | 4.1      | 460.0              | 611.1       | .016         | .000      | .016                | .00       | .0000                 | · o             |                                                         |                       |
| E SULTRA ALASKANA  | 8-ADULT        | 40010    | 413      | 960.0              |             |              | 00        | .016                | .00       | .0000                 |                 | - 0.0                                                   | . 0.4                 |
| ESUCHRA ALASKANA   | L-EGG-C FEM    | 400.0    | 2.4      | 400.0 -            | 34.0        | *010         | .000      | .010                |           | +0000                 |                 |                                                         | • • • •               |
| ESOCHRA PYGHALA    | 6-ADULT        | 1846.0   | 9.2      | 80.0 -<br>960.0    | 77.7        | .048         | .000      | +014-               | •00       | +0000                 |                 | •01                                                     | •03                   |
| 2 SOCHRA PYGMAEA   | 1-666-C FFM    | 120.0    | . 5      | 120.0 -            | 8.5         | .004         | .000      | 04-                 | .00       | .0010                 | ٥               | .00                                                     | .00                   |
| ITHEYELLA SP.      |                | 104653.3 | 627.4    | -0.0 -             | 4177.4      | . d 31       | .004      | +604-               | .01       | .0000                 | .0000           | .92                                                     | • >2                  |
| FTHEYELLA SP.      |                | 210760.0 | 1129+6   | 200.0 -            | 8221.8      | .455         | .002      | .004-               | •01       | +000u                 | .0000           | 1.29                                                    | +29                   |
| THEYELLA SP.       | A-JU4+ADULT    | 960.0    | 4.8      | 44720.0            | 57.1        | .028         | .000      | 100                 | .00       | .0001                 | .0000           | .01                                                     | .02                   |
| TTHEYELLA SP.      | C-J/A NOSEX    | 80.0     | .4       | 800.0<br>40.0 -    | 4.0         | .008         | .000      | .016.<br>.604-      | .00       | .0001                 |                 | .00                                                     | .01                   |
| THEYELLA SP.       | 640048930044   | 27560.0  | 138.5    | 40.0<br>40.0 -     | 644.4       | .452         | +002      | .004-               | .01       | .0001                 | .0000           | .15                                                     |                       |
|                    | L-EGG-C EEA    | 440.0    |          | 8320.0             | 28.4        | . 048        |           | 080.                | - 00      | .0001                 |                 |                                                         | .03                   |
| HALLSTRIUAC        | 8-ADULT        | 40010    |          | 400.0              |             |              |           | .040                |           |                       |                 |                                                         | . 67                  |
| TAKIHRODE2 26"     | 8+ADULT        | 320.0    | 1.6      | 320.0 -<br>320.0   | 27.1        | .63.         | .000      | .032-               | •00       | .0001                 |                 |                                                         |                       |
| TCLUPDIDA          | C-J/A NOSEX    | 565.7    | 3.4      | 666.7 -<br>666.7   | 47,3        | . 67         | .000      | +067-<br>+067       | .00       | .0001                 | . °.            | . 00                                                    | • 64                  |
| YCLOPUIDA          | F-COPEPUALD    | 1966.7   | 9.4      | 40.0 -             | 84.6        | .103         | .001      | .004-               | 101       | .0001                 | .0000           | .01                                                     | . 66                  |
| BPYCALUS SP.       |                | ×0.0     | ••       | 40.0 -             | 2.8         | .004         | .000      | .004-               | •00       | .0001                 | 0               | .00                                                     | .00                   |
| OFTCAEUS SP.       | 9-AVILI        | 160+0    | • *      | 100.0 -            | 11.3        | .008         | .000      | -004-               | .00       | .0001                 | 0               | .00                                                     | .01                   |
| UKYCAEUS ARGLICUS  | F-COPLPUDID    | 40.0     | .2       | 160.0<br>60.0 -    | 2.A         | .004         | .000      | .008<br>.004-       | •00       | 10051                 | 0               | .00                                                     | .00                   |
| OPYCAEUS ANGLICUS  | O-ADULT        | 40.0     | .,       | 40.0<br>40.0 -     | 2.8         | .004         | .000      | .004<br>.004-       | .00       | .0001                 | · 0             | .00                                                     | .00                   |
| ALTOYOLOPS SP      | F-CORE POD 10  | 260-0    | 1.7      | 40.0               | ж. 9        | .020         | .000      | .004                |           | .0001                 | .0000           | . 40                                                    | .61                   |
| MELETCENTS SPE     | d-AŪULT        | 49010    | 4.44     | 80.0               | 0.1         |              |           | .69#                |           |                       |                 |                                                         |                       |

B-18

1 i

41.2 ...

• 1

LP1803T01C PLANETON ANALYSIS

SUMMARY TABLES PAGE 18

**x** '

. ..

.

- -

| GRGANISM NAME      |                                          | •        | NUMAERS       | /#++3             |         | . WET         | <b>NETGHT</b> | GRAM5/M++3     | l I  | + AVG.     | BIOMASS | + PERCENT | AGES                  |
|--------------------|------------------------------------------|----------|---------------|-------------------|---------|---------------|---------------|----------------|------|------------|---------|-----------|-----------------------|
| PAPTS CODE         | LH-STAGE                                 | . TOTAL  | PLAN          | RANUE             | 5.0.    | • TOTAL       | HEAN          | PANGE          | 5.0. | + NEAN     | S.D.    | + JANCE   | MASS                  |
| HALICYCLOPS SP.    | 4_ 10011 ADV11 T                         | 720.0    | 3.6           | 280.0 -           | 36.9    | .004          | .000          | .004-          | .00  | .0000      | .0000   | .00       | .01                   |
| HALICYCLOPS SP+    | E-CORF POD 10                            | 1160.0   | 5.8           | 440.0 -           | *9.7    | .012          | .000          | +004-<br>+008  | •00  | .0000      | .0000   | .01       | •01                   |
| HALICYCLUPS SP.    | L-LGG-C FEM                              | 40+0     | •2            | 40.0 -<br>40.0    | 2.P     | •404          | .000          | .C04-<br>.004  | .00  | .0001      | 0       | .00       | .00                   |
| CYCLOPS SP.        | A-JUVIADULT                              | 104000.0 | A24.1         | - 0.00004C        | 11341.6 | 1.616         | •008          | .004-          | •11  | .0000      | .0000   | .92       | 1.02                  |
| CYCLOPS SP.        | C-J/A NOSEX                              | 40.0     | •2            | 40.0 -<br>4v.0    | 2.8     | .004          | .000          | .004-<br>.004  | •00  | .0001      | 0       | .00       | .00                   |
| CYCLOPS SP.        | F-COPEP4010                              | #3012.6  | 421.2         | 40.0 -<br>6000.0  | 934.7   | 3.118         | .006          |                | .02  | .0000      | •0000   | •47       | .71                   |
| CYCLOPS VERNALIS   | 1-E GG                                   | 40.0     | .2            | 40.0 -            | 7.8     | .004          | .000          |                | .00  | .0.01      | ·····   | ••••      |                       |
| CYCLOPS VERNALIS   | 7-JUVENILE                               | 46.0     | 12<br>11-7    | 40.0              | 7.0     | +UU+<br>. 200 | .000          | •00            | .00  | -0001      | - 0000  | ··· .04   | .19                   |
| CTCLOPS VERNALIS   | 8- ADULT                                 | 136040-0 | 31+1<br>A.Ebd | 1240.0            | 3992.1  | 2.549         | .013          | .100           | .12  | .0000      | .0000   |           | 1.01                  |
| CYCLOPS VERNALLS   | A-JUV+ADULT                              | 1240-0   | 6.2           | 48000.0<br>40.0 - | 38.8    | .072          | .000          | 1.500          | .00  | .0001      | .0000   |           | .05                   |
| CYCLOPS VERNALIS   | C-J/A NOSEX                              | 67843.3  | 440.9         | 480.0<br>40.0 -   | 788.6   | 1.842         | .009          | +016           | .02  | .0000      | .0000   | .38       | 1.10                  |
| CYCLOPS BICUSPIDAT | F-COPEPODID<br>US THOMASI                | 200.0    | 1.0           | 6000.0<br>200.0 - | 14.2    | .004          | .000          | .2u0<br>-404-  | .0ú  | .0000      | 0       |           | .00                   |
| CYCLOPS BIEUSPIDAT | 5-VELIGER<br>US THOMASI                  | 5453.3   | 27.4          | 200.0<br>40.0 -   | 161.7   | .179          | .001          | .004-          | .01  | .0001      | .0000   | .03       | `in <u></u> -         |
| CYCLOPS BICUSPEDAT | B-ADULT<br>IZAMOIT ZU                    | 205500.0 | 1049.2        | 1440.0<br>80.0 -  | 9087.9  | 2.367         | .012          | .604-          | .11  | .0000      | .0000   | - 1+17    | 1.49                  |
| CYCLUPS BICUSPIDAT | A-JUYFAUULI<br>US THUMASI<br>C- MA NOSEY | 2080.0   | 13.5          | 40.0 -            | 64.0    | .156          | .001          | +004-          | .00  | .0001      | .0000   |           | .10                   |
| CYCLOPS BICUSPIDAT | 5 THOMASI                                | 126901.3 | 637.1         | 40.0 -            | 1049.8  | 2.044         | •013          | .404-          | .04  | .0000      | .0000   | .71       | 1.67                  |
| RESUCYCLOPS EDAX   | 6-ADULT                                  | 1173.3   | 5.7           | 400.0 -           | 61.6    | +112          | .001          | .040-          | .01  | .0001      | .0000   | .01       | .07                   |
| RESUCYCLOPS EDAX   | C-J/A NOSEX                              | 80.0     | .4            | 80.0 -<br>80.0    | 5.7     | .004          | .000          | .004-          | .00  | .0001      | 0       | •00       | .00                   |
| PARACYCLOPS FIMBRI | NTUS<br>N-ADULT                          | 10004.0  | 2013          | 40.0 -<br>2960.0  | 279.3   | -223          | .001          | .004-          | .00. | .0001      | .0000   | •06       | .14                   |
| PARACYCLIPS FINSKI | ATUS<br>A-JUV+ADULT                      | 2286.0   | 11+>          | 200.0 -<br>460.0  | 91.1    | .016          | .000          | +C04-<br>•004_ | .00  | .0000      | •0000   | •01       | •01<br>- 03 · · · ··· |
| PARACYCLOPS FIMBRI | ATUS<br>C+J/A NQSEX                      | 400.0    | Z.0           | 40.0 -<br>200.0   | 18,3    | +024          | .000          | .004-          | .00  | 10001      | +0000   | •00       | . 62                  |
| PARALILINPS FIMERI | A 105<br>F-CUPEPU0 10                    | 22.00.0  | 111.0         | 40.U -<br>6720.0  | N17.8   | .421          | .002 -        | .064           | .00  | .0001      | . 0000  | •#C       |                       |
| PARACTELUPS FINBRI | L-LGG-C FEM                              | 80.0     | 3.0           | 40.0 -<br>160.0 - | 10.7    | .064          | .000          | .004-          | .00  | *0001      | 0000 °  |           |                       |
| OTIMURA SL.        | 2-NAUPLIUS                               |          |               | •0•0              |         | , 004         |               | 1004           |      | · ·· ·· ·· |         |           |                       |

\_\_\_\_

.

B-19

EPIRENTNEL PLANKTON ANALYSIS

#### SUMMARY FASEFS PACE 14

| ORGANIST HAME      |                  | •       | NUMBERSA | ***3              |        | ٠ | WET     | icIGHE, | GRAMS/M++       | 9     | • • | VG. I | BIUMASS | . PERCEN | TAGES        |          |
|--------------------|------------------|---------|----------|-------------------|--------|---|---------|---------|-----------------|-------|-----|-------|---------|----------|--------------|----------|
| PARTS CUDE         | LH-STA ÜE        | • TOTAL | MEAN     | RANGE             | s.n.   | ÷ | TOTAL   | MFAN    | PANGE           | \$.0. | •   | MEAN  | 5.D.    | + DANCE  | W722<br>010- |          |
| OLTHUNA SP.        | 8=4010 T         | 2240.0  | 11.3     | 40.0 -<br>2000.0  | 147.2  |   | -212    | .001    | .404-           | .01   | •   | 0001  | .0000   | •01      | +13          | <b>.</b> |
| OTTHUNA SP.        | C-J/A NOSEX      | 2800.0  | 14.1     | 00.0 -            | 100.3  |   | .077    | .000    | .004-           | .00   | •   | 0000  | .0000   | •02      | .05          |          |
| OITHUNA SP.        | F+CILLE POD 10   | 680.0   | 3.4      | 40.0 -            | 20.8   |   | .032    | .000    | .004-<br>UD5    | •00   | •   | 0001  | .0000   | .00      | • 02         |          |
| GITHUNA SIMILIS    | 8-ADULT          | 80.0    | • •      | 80.0 -<br>90.0    | 5.7    |   | .004    | .000    | . 604-          | • 00  | •   | 0001  | ٥       | .00      | .00          |          |
| варанопокрна       | 2-NAUPL IUS      | 67296.0 | 338+1    | 40.0 -<br>10520.0 | 1390,7 |   | +741    | .004    | .604-           | • u ł | •   | 0001  | .0000   | .30      | . 47         |          |
| BALAN:)HORPHA      | E-CYPNIS         | 3120.0  | 15.7     | 40.0 -            | 143.6  |   | . 272   | .001    | .004-           | + O L | •   | 0001  | .0000   | .02      | •71          |          |
| MYSIDACEA-HYSIDA   | 7-JUVENILE       | 366.0   | 1.8      | 40.0 -<br>140.4   | 13.5   |   | •068    | .000    | .004-           | •00   |     | 0003  | .0004   | • 00     | • 04         |          |
| ARCHAEGMYSIS GREBN | 8-ADULT          | 80.0    | • 4      | 40.0 -<br>40.0    | 4.0    |   | .160    | ,001    | .040-<br>.12ú   | •01   | •   | 0020  | .0014   | .00      | .10          |          |
| NEGMYSIS SP.       | 7-JUVENILE       | 40.0    | •2       | 40.U -<br>40.D    | 2.8    |   | +004    | .000    | .004-           | .00   | •   | 0001  | 0       | •00      | . ÇD         |          |
| NELMYSIS HERCEDIS  | 7-JUVENILE       | 64.0    | • •      | 40.0 -            | 4.0    |   | • 5 • 6 | ,001    | .000-           | .01   | •   | 0025  | .0607   | .00      | •13          |          |
| NEOMYSIS MERCEDIS  | 8-ADULT          | 40.0    | •2       | 40.0 -<br>40.0    | 2.8    |   | • 520   | ,003    | -520-<br>520    | .04   | •   | 0130  | 0       |          | • 33         |          |
| NEDNYSIS MERCEDIS  | C-J/A NOSEX      | 40.0    | •2       | 40.0 -            | 2. A   |   | +200    | .001    | • 200-<br>• 200 | •01   | •   | 0050  | 0       | .00      | .13          |          |
| CUMACEA            | 7-JUVENILE       | 40.0    | .?       | 40.0 -            | 2.6    |   | +004    | +000    | .004-           | •00   |     | 0001  | •       | •00      | •00          | •        |
| LEUCON SP          | 3-10AFHEFE       | 9120.0  | 45.8     | 7000.0            | 505.0  |   | .625    | .004    | .604-           | .05   | •   | 0001  | •0000   | .05      | . 52         |          |
| LEUCON SP          | 8-ADULT          | 360.0   | 1.8      | 40.0 -<br>320.0   | 27.8   |   | .044    | .000    | .040            | .00   | •   | 0001  | .0000   | •00      | •03          |          |
| LEUCON SP          | ATJUY+ADJLT      | 3120.0  | 15.7     | 280.0 -<br>2840.0 | 742.7  |   | .680    | .003    | .040-           | .05   | .*  | 0002  | .0001   | .02      | • • 3        |          |
| LEUCON SP          | CHUIA NOSEX      | 400.0   | 2.0      | 40.0 -<br>150.0   | 15.4   |   | .064    | .000    | .004-           | •00   | •   | 0001  | +0401   | - 00     | .04          |          |
| EUDURELLOPSIS SP.  | C-J/A NOSEX      | 40.0    | • 2      | 40.0 -<br>40.0    | 2.8    |   | .004    | .000    | •604-<br>•014   | .00   | •   | 0001  | 0       | .00      | .00          |          |
| GAMMAR LOEA        | 7-JUVENILE       | 40.0    | .2       | 40.0 -            | 2.6    |   | .004    | +000    | .004-           | .00   | •   | 0001  | · D     | •00      | •00          |          |
| CUROPHIUM SP.      | 7-JUVENILE       | 5902.7  | 29.7     | 40.0 -<br>1453.3  | 117.0  |   | •724    | .004    | .204-           | .01   | •   | 0001  | .0002   | .03      | . 40         |          |
| COROPHIUM SALHONIS | 7-JUVÉNIL E      | 1120.0  | 5.5      | 40.0 -            | 40.8   |   | 1.336   | .007    | .004-           | .07   | ٠   | 0011  | .000a   | .01      | .84          |          |
| CUROPHIUM SALMONIS | 8-ACULT          | 400.0   | 2.0      | 160.0 -           | 20.4   |   | . 970   | .005    | .120-<br>.500   | .06   | •   | 0020  | .0032   | .00      | .50          |          |
| CUROPHIUM SALMONIS | A-JUV+ADULT      | 3400.0  | 17.1     | 360.0 -           | 146.1  |   | 3.120   | .016    | .240-<br>2.080  | .16   | •   | 0010  | .0605   | .02      | 1.97         |          |
| CORUPHIUM SALMONIS | C-J/A NOSEK      | 240.0   | 1+2      | 60.0 ÷<br>160.0   | 12.7   |   | .720    | .004    | .CHO-<br>.640   | .05   | •   | 0025  | .0021   | .00      | • 45         |          |
| EUGAMMARUS CONFERV | 1COLOS<br>1COLOS | 1280.0  | 6.4      | 40.0 -<br>480.0   | 45.7   |   | .424    | ,007    | .u04-<br>.200   | .02   | •   | 0002  | .0002   | .01      | •27          |          |

ť

۰ ک

SURMARY TABLE, PAGE 20

۰.

EPIDENTHIC PLANETUN ADDETDIG

| ORGANISH GAME      |                  |              | NUMPLRS/ | Hee 3           | :           | WE 7   | ¥E16H1, | 0PAR5/N++     | 3     | + AVG. | BIUMASS                                 | + PERCENT | AGES  |              |
|--------------------|------------------|--------------|----------|-----------------|-------------|--------|---------|---------------|-------|--------|-----------------------------------------|-----------|-------|--------------|
| PARTS CODE         | LH-STAGE         | + TOTAL      | MFAN     | RANGE           | 5.0.        | TOTAL  | MEAN    | RANGE         | \$.0. | • NEAN | 5.0.                                    | P DANCE   | MASS  | • •          |
| EUGAMMARIIS SP.    | 7-11954055       | 0.0600       | 33.0     | 40.0 -          | 324.0       | .456   | .00Z    | +404-         | .0?   | .0001  | .0000                                   | .04       | • 29  | •            |
| EDHAUSTARIUS SP.   | 7-JOVENILE       | 40.0         | . 4      | 40.0            | 4.0         | .008   | .600    | .004-         | .00   | .0001  | · ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | .00       | • 01  |              |
| PARAPHOXUS SP.     | H-AGULT          | 46.0         | •2       | 40.0 -          | 2.8         | •24C   | .001    | 240-          | •0Z   | -00f0  | 0                                       | .00       | -15   |              |
| NPHIPODA-HYPEKIIDE | A<br>7-JUVENILE  | 40.0         | . Z      | 40.0 -          | 2.8         | .004   | .000    | +04-          | .00   | .0001  | 0                                       | .00       | .00   |              |
| RANGONIDAE         | 7-JUVENILe       | <b>40.</b> 0 | •2       | 40.0 -<br>40.0  | 2.H         | .080   | .000    | -040-<br>.080 | •01   | .0070  |                                         | .00       | .05   |              |
| RANGIN SP.         | 4-MEGAL UP       | +0.0         | . ?      | 40.0 -<br>p     | 2.8         | • 00 4 | .000    | -004-         | •00   | .0001  | 0                                       | .00       | •00   | • • •        |
| RANGUN FRANCISCORU | IN<br>74JUVCHILE | 80.0         | ••       | 40.0 -          | 4.0         | +260   | • UN 3  | •120-<br>•440 | •03   | .0070  | .0057                                   | .00       | • *>  |              |
| INSECTA I          | 5-LARVA          | 40.0         | **       | 80+0 -          | 7.1<br>47.6 | .127   | .001    | +004-         | .00   | .0001  | 0<br>~                                  | .00       | .00   |              |
| GLIENBOLA          | 8-ADULT          | 40.0         | •••      | 665.7           | 7.8         | - 46 7 | .000    | 067           |       | .0003  |                                         |           | • to  | · <b>-</b> - |
| OLLEMBULA          | C-J/A NOSEK      | 80.0         | ·        | +0.0            | 4.0         | .00.0  | .000    | 004           | .00   | adaı   |                                         | .00       | .01   |              |
| SOTUHIDAE          | C-J/A NOSEX      | 50.0         | .4       | 40.0<br>80.0 -  | 5.7         | • 00 e | .000    | 004<br>- 800  | .00   | .0001  |                                         | .00       | .a.   |              |
| NTUNDARYIDAL       | C-JIA NOSEN      | 80.0         | 4        | 80.0<br>40.0 -  | 4.0         | .008   | .000    | .008<br>.004- | .00   | +0001  |                                         | .00       | 01    |              |
| DONATA             | C-1/A NOSEX      | 86.0         | .4       | 40.0<br>40.0 -  | 4.0         | .006   | .000    | 400.<br>-400. |       | ~      | ·-··-o-                                 | .00       | .01   |              |
| ANISOPTEPA         | H-NYAPH          | 40.0         | • 2      | 40.0 -          | 2.8         | + 104  | .000    | -004<br>-004  | .00   | .0001  | 0                                       | .00       | .00   |              |
| TGOPTERA           | H-NYMPH          | 60.0         | .4       | 40.0 -          | 4.0         | .00a   | .000    | .004-         | .00   | .0001  | ٥                                       |           | • 01  |              |
| SOCOPTERA          | H-NYMPH          | ec. a        | · •+     | 40.0 -          | 4.0         | • 00 P | •000    | +004-         | .00   | .0001  | 0                                       | .00       | •01   |              |
| THY SANUP TE R.A.  |                  | 40.0         | • 2      | +0.0 -          | 2.8         | .004   | .000    | .604-         | .00   | .0001  | 0                                       | .00       | • 00  | -            |
| ULLOPTERA          | C-J/A NOSEK      |              | •5       | 40.0 -          | 7.8         | .004   | .000    | .004-         | .00   | .0001  | 0 Í                                     | .00       | 0     |              |
| 11PTERA            | 0-ADULT          | 80.0         | • 4      | 40.0 -          | 4.0         | .008   | .000    | - 004-        | •00   | .0001  | Ō                                       | - 00      | .01   | •            |
| ERATOPOGONIOAE     | 6-LARVA          | 520.0        | 2.0      | 40.0 -<br>440.0 | 31.4        | .016   | .000    | +004-<br>+008 | .00   | *000T  | •0000                                   | •00       | *01   |              |
| ENATOPAGONIDAE     | Q-ADULT          | <b>40.0</b>  | •2       | 40.0 -          | 7.8         | .004   | .000    | .604-<br>.004 | .00   | .0001  | 0                                       | .00       | • 00  |              |
| ENATOCERA          | G-LARVA          | 0.05         | •4       | 40.0 -<br>40.0  | 4.0         | .009   | .000    | .u04-<br>.u04 | •00   | .0001  | 0                                       | •00       | • 6 1 |              |
| NE MA TÚC ERA      | U-ADULT          | +0.0         | .2       | 40.0 -<br>46.0  | 2.8         | - 004  | .000    | .004-<br>.004 | •00   | .0001  | 0                                       | .00       | .00   |              |
| NEMATOCERA         | G-PUPA           | 40.0         | • 2      | 40.0 -<br>46.0  | 8           | .004   | .000    | .004-<br>,004 | •00   | .0001  | 0                                       | .00       | .00   |              |

# LPIGLATHIC PLANKTON ANALYSIS

### SUMMARY TABLES PAGE 71

...

...

÷

.

.

.

\_\_\_\_

. .

: 1

- ·

. ---- --

\_ . . . \_ - .

.....

• /

\_\_\_\_....

 $\sim 1$ 

| RCANISM NAME                                                   |                               | 1                               | NONBEX? | /#**3                |         | . WET   | WEIGHI, | GRAPS/N++; | 3     | * A#G. | BIUPASS | * PERCEN                                 | TAGES        |
|----------------------------------------------------------------|-------------------------------|---------------------------------|---------|----------------------|---------|---------|---------|------------|-------|--------|---------|------------------------------------------|--------------|
| PARTS CODE                                                     | LH-STAGE                      | + TJTAL                         | MEAN    | RANGE                | S.D.    | . TOTAL | MEAN    | PANGE      | \$.0. |        | 5.6.    | <ul> <li>ABUN-</li> <li>Dance</li> </ul> | AIC-<br>Mass |
| РТСРА~СНІВВНОМІ                                                | 6-LAKVA                       | 24925.3                         | 125.3   | 40.0 -               | 004.6   | 1.024   | .005    |            | .0>   | .0001  | .0601   | .14                                      | .65          |
| EPTEPA-CHIRONDHII                                              | DAE<br>B-ADULT                | 40.0                            | •5      | 40.0 -<br>50.0       | 2.8     | .004    | .040    | - 604-     | .00   | .0001  |         | .00                                      | .00          |
| ROIGRADA                                                       | 8-ADULT                       | 10760-0                         | 54.1    | 40.0 -<br>7360.0     | 529.0   | + 472   | .001    | .004-      | .01   | .0001  | .0000   | .06                                      | +17          |
| ADIGRADA                                                       | C-J/A 1105 EX                 | 1800.0                          | 9.0     | 40.J -               | 68.3    | .060    | .000    | 1004-      | .00   | .0001  | .0000   | .01                                      | .04          |
| RDIGRADA                                                       | L-EGG-C FEM                   | 2400.0                          | 12.1    | 1120.0 -             | 120.3   | .080    | .000    | -01A-      | •00   | .0000  | .0000   | .01                                      | .05          |
| YUZOALECT DPROCTA                                              | U-ADULT                       | 120 <b>.0</b>                   | ••      | 120.0 -              | A.4     | .004    | .070    | .004-      | .00   | .0000  | 0       | .00                                      | .00          |
| LEDSTEI                                                        | 1-EGG                         | 160.0                           | . 8     | 40.0 -               | 5.4     | .01£    | .000    | .004-      | .00   | .0001  | Ó       | .00                                      | .01          |
| LEUSTEI                                                        | 6-LARVA                       | 80.0                            | -4      | 40.0 -               | 4.0     | .608    | .000    |            | .00   | .0001  | 0       | .00                                      | .01          |
| GRANLIS MORDAX                                                 | 1-EGG                         | 40.0                            | .2      | 40.0 -               | 2.8     | .004    | .000    |            | .00   | .0001  | ٥       | .00                                      | . 60         |
| MEXIDAF                                                        | G-LARVA                       | 120.0                           | ••      | 40=0 ~               | 6.3     | .008    | .000    | 004~       | .00   | .0001  | .0000   | .00                                      | .01          |
| IDFNTIFIED EGG                                                 | 1-EGG                         | 467960.0                        | 2351.6  | 40.0 -               | 17665.6 | .784    | +004    | +004-      | .02   | .0000  | .0000   | 2.62                                     | .49          |
| IDENTEFIED EGG                                                 | N-EGG CASE                    | 2+50+0                          | 10.7    | 40.0 -               | 64.0    | .124    | .001    | .004-      | .00   | .0001  | •0000   | .01                                      | .04          |
| IDENTIFIED                                                     | C-J/A NOSEX                   | 52946.0                         | 201.5   | 40.0 -<br>48000.0    | 3404.8  | 1.732   | .009    | . 604-     | .11   | .0002  | .0003   | .29                                      | 1.09         |
| TAL NUMBER OF PL                                               | ANKTON CATEG                  | J <b>⊯IES 406</b>               |         |                      |         |         |         |            |       |        |         |                                          |              |
| IFFUNIN <del>-</del> Z DIA <del>I</del> K2<br>INNON-MEINEB DIA | ERSITY INDEX<br>Ity index.845 | NUMBERS<br>Didmass<br>Ed an Num | BERS    | 4.97<br>6.24<br>6.97 |         |         |         |            |       |        |         |                                          |              |

**B-**22

| *********                           | SUMMARY TABLED PAGE 1                                                                                           |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                     |                                                                                                                 |
|                                     | *******                                                                                                         |
|                                     | • GRAND SHKMAPY •                                                                                               |
|                                     |                                                                                                                 |
| RUN COLLECTIONSE ATTAINS CRAFTING A |                                                                                                                 |
|                                     |                                                                                                                 |
|                                     |                                                                                                                 |
| HOAP14 14042                        |                                                                                                                 |
| BUAPIS 14003                        |                                                                                                                 |
| HOAP26 1400H                        |                                                                                                                 |
|                                     | ; ,                                                                                                             |
| 00AP24 1+014                        |                                                                                                                 |
| UOAP24 1.014                        | i 2                                                                                                             |
| #0AP24 14016                        |                                                                                                                 |
|                                     |                                                                                                                 |
| 404714 14065<br>404714 14065        |                                                                                                                 |
|                                     | 2 E                                                                                                             |
| 60PY19 16016                        |                                                                                                                 |
| 80MY1 x 16014                       |                                                                                                                 |
| 000YE9 . 4016                       |                                                                                                                 |
| HOMY19 LODIO                        |                                                                                                                 |
|                                     |                                                                                                                 |
| 80MY20 14002 0                      | 2                                                                                                               |
| dbull2314u021                       | 1                                                                                                               |
| 00JN23 14002 (                      | 2                                                                                                               |
|                                     | 1                                                                                                               |
| 80JN23 14005 (                      | 2                                                                                                               |
|                                     |                                                                                                                 |
| HLJN2, 1401a (                      |                                                                                                                 |
| H0JN23 16010                        |                                                                                                                 |
|                                     |                                                                                                                 |
| HOJY14 14002 0                      |                                                                                                                 |
| H0JY14 14005 6                      | 1                                                                                                               |
| ADJY14 14005 0                      |                                                                                                                 |
| HOJY14 14050 0                      | <u> </u>                                                                                                        |
| MOJY14 14000 G                      | 2                                                                                                               |
|                                     | 1                                                                                                               |
| NUJT14 14016 G                      | ·                                                                                                               |
|                                     |                                                                                                                 |
| BDAILD TALUS C                      |                                                                                                                 |
| BUAULS 14005 C                      |                                                                                                                 |
|                                     |                                                                                                                 |
| 80AU15 1400a G                      |                                                                                                                 |
|                                     | 1                                                                                                               |
| POAULS 14010 6                      |                                                                                                                 |
| BUILLE 14040 G                      | 2                                                                                                               |
| #011C19 1+002 G                     | 1                                                                                                               |
| #00019 14092 G                      | 2                                                                                                               |
| anner9 14006 G                      |                                                                                                                 |
|                                     | the second se |
| BOUCIA 16000 C                      |                                                                                                                 |
| 801/C19 14018 G                     |                                                                                                                 |
|                                     |                                                                                                                 |

EPIBLISTHIC PLANKTON ANALY.15

SETÉ TABLES PAGE 2

•

EBON\_COLLECTIONS: FILLIN\_STATION\_TAPLE 614450 14004 .5.1 6 2 HEJASU 14002 81FL26 14002 81FL26 14002 .01 62 \_ . . BIF120 14005 6 1 ALAP15 14002 G 1 BIAP15 GZ BLAP15 14008 \_G 1 PLAP15 15017 014P15 14017 ų. G 2 G 1 81341P 14002 14002 GZ 814710 14000 0147.0 14000 P14710 14007 P14710 14017 P14710 14017 6 1 6 2 <u>61</u> 62 SPECIES OFFINITION -

 $\Box$ .  $\Box$ 

AdUNDANCES AND WEIGHTS AFE ADJUSTED TH A VOLIME OF 1.0 CHBIC METERS

|                   | PEAN     | PANGE           | \$.D. (  | DEF.VAR |  |
|-------------------|----------|-----------------|----------|---------|--|
| SAMPLE VOLUME     | 9.82     | •20-<br>91-6H   | 12.21    | 1.24    |  |
| TUTAL WET WEIGHT  | .564     | 007-            | • 44 4   | 1.080   |  |
| TUTAL ABUNJANCE   | 38464+38 | 377.79-         | 75479.40 | 1.98    |  |
| SAMPLE WET WEIGHT | . 527    | U-<br>5,492     | .834     | 1,596   |  |
| SAMPLE DEY WEIGHT | 0        | 0 <i>→</i><br>0 | ú        | 0       |  |

| ORGANISM NAME |           | *       | LUMBERS/ | M++3           |      | • •          | FT WEIGHT | GRAMS /MAA | 3    | * AVG. | BIONASS | · PERCEN | TAGES |  |
|---------------|-----------|---------|----------|----------------|------|--------------|-----------|------------|------|--------|---------|----------|-------|--|
| PARTS CODE    | LH-STAGF  | • TOTAL | MEAN     | PANGE          | 5.7. | + TUTAL      | MEAN      | RANGE      | S.D. | * MEAN | 5.0.    | * DANCE  | MASS  |  |
| HYDROIDA      | U-POLYP   | 110.9   | 1.5      | 10.7 -<br>44.3 | 7.2  | . <b>0</b> 1 | 0 .000    | . 001-     | .00  | .0001  | .0000   | .00      | .02   |  |
| HYDROIDA      | n-Hebtisa | 374.7   | 5.2      | 20.4 -         | 30.4 | .04          | 9 .001    | .001-      | •00  | .0003  | .0004   | .01      | -12   |  |

,

| c1  | LPERLHENIC PLANA   | 14 ALALY.**<br>**********   |                |                |                |                 |                  | 511M9 A 49    | TABLER PAR     | GF 3                                          |          |                    |           | • •          |
|-----|--------------------|-----------------------------|----------------|----------------|----------------|-----------------|------------------|---------------|----------------|-----------------------------------------------|----------|--------------------|-----------|--------------|
|     | BRGANIC 1. NAME    |                             |                | NAPOTKAT       | (***)          |                 |                  | 1_#1109110    | RANS/N. 3      |                                               | •_AYGd   | -                  | •_PERCENT |              |
|     | PAPTA CODE         | LU-STAUF,                   | • TOTAL        | HLAN           | RANGE          | 5+D+ . +        | FOTAL            |               | . PANGE        | 5.D                                           | •<br>    | 5.0.               | . ABUN-   | 810-<br>MASS |
|     | CURDYLOPHORA SP.   |                             |                |                |                | ±142            |                  |               | 601-           | .00                                           | .0001    |                    | .00       | .00          |
|     | _CONDYLUPHORA_SP.  | Recourse                    | •k             |                |                | 0_              | 191              | .002          | .001<br>.141-  | .02                                           | 1.7300   | 0                  | .00       |              |
|     | DOELIA SP.         |                             |                |                | •1<br>•••      | let             |                  |               | +141           | .00                                           | .0010    |                    |           |              |
|     | STPHONUPHORA       | w-cating                    | 26.4           |                | 10.2           | 1.7             | .042             | .001          | .030           | - 00                                          |          |                    |           |              |
|     | TURBELLAPIA        | *=COLINY                    | 54:00          |                | 2001           | - 45.1          | .045             | .001          | .041           |                                               |          | <u>• 9 9 6 9 .</u> |           |              |
|     | TURBELLAPIA        | TJURA-8                     | 972.2          | 13.5           | 274.3          | - 58.3          | . 0.20           |               | +040           |                                               | 0001     | <u>.0001</u>       | 102       |              |
|     |                    | C-J/A ((DseX<br>4004000000) | 24.8           | .3             | 358.9          | - 2.9           |                  |               | .012           | _+ <u>90</u>                                  | .0001    | .0000              | .04       | <u>_</u>     |
| 1   | RUTIFERA           | C-J/A HOSEX                 | 77239.5        | 1072.0         | 24.8           |                 |                  |               | NEG.           |                                               | 0000     | <u> </u>           |           | .00          |
| ł   | RUTIFERA           | n-ADULT                     | 58.504.5       | 412 A          | 40333.3        |                 |                  | +003          | .050           | .01                                           | .0000    | 0000               | 2.02      |              |
| ļ   | NE MATODA          | C-J/A NOSER                 | 167.6          |                | 20546.3        | - <u>1114.7</u> | .030             | .000          | NEG<br>.012    | • <b>0</b> 0                                  | . 9009   | 0000               | 4.13      |              |
| 1   | NE BATODA          | B-AUULT                     | 10/10          |                | 104.8          |                 | 006              | , <u>0</u> 00 | NFG            | .00                                           | .0000    | 0000               | .01       | .02          |
|     |                    | C-J/A NOSEX                 | 610194 F       |                | R000.0         | 1242.0          | . 321            |               | NEG            | •97                                           | 0001     | 0000               | .03       | . 79         |
|     | ALL VENALETA       | 6-ADULT                     | 100(.7         | 100.5          | 3124.9         | 677.6           | +015             | <b>,0</b> 00  | NEG -          | .00                                           | 0000     | 0000               |           |              |
|     | PULLENAFIA         | 0-LARVA                     | 2320.5         | 73.9           | 17.9           | 399.6           | +101             | .001          |                | -01_                                          | .0001    | 0000               |           |              |
|     | FULTRUIDAE         | 7-JUVENILE                  | <u>1 Ç 1 Z</u> | • <u>k</u>     | 10.2           | 1.2             | .001             | .000          |                | .QJ                                           | .0001    | 0                  |           |              |
| •   | NEANTHES LIMNICULA | 7-JUVENILE                  | <u> </u>       | .0             | ;              | ·,              | 1093             | .001          | -043-          | .01                                           | +0+00    | 0                  | .00       | . 23         |
| . • | SPIONIDAE          | 0-LARVA                     | 1546.9         | 21.4           |                | 176.8           | .660             | .001          | .093<br>.010-  | .01                                           | .0001 .  | 0002               | .06       | •15          |
|     | SPIONIDAE          | 7-JUVINILE                  | 2498.7         | . 251/         | 35.1 -         | 165.3           |                  | +002          | .050<br>.001-  | .01                                           | .0001 .  | 0000               | .09       | . 35         |
| • • | ULIGOCHAETA        | 7-40461116                  | 24,0           |                | <u>8,+2</u>    | 2.7             |                  | 1000          | .093<br>NEG    | .00                                           | .0001    | 0                  | . 00      | . 01         |
|     | OL IGOCHAFTA       |                             | 1530.5         | <u> 4? • v</u> | 21.4<br>1.g.=  | 91.4            | +112             | .007          | +002<br>NEG    | .01                                           | .0001    | 0000               | .06       |              |
| -   | GASTHUPODA         | Ta cout on a                | 39.7           |                | 591.9<br>      | 217             |                  | .040          | .051           | .00                                           | .0001    | 0000               | . 00      |              |
| ← _ | HE SUGAS THUPODA   |                             | 104.6          | 2.0            | 20.4           | 71.1            | .007             | .000          | .001           | .00                                           |          |                    |           |              |
| -   | AIVALVIA           |                             | +327+9         | 10+4           | 174.4          | 117.9           |                  | .000          |                |                                               |          |                    |           |              |
| ۰ - | BIVALVIA           | O-LARVA                     | 10324.2        | 143.8          | 837.3<br>3.5 - | 637.n           |                  | J¥¥¥.,        | •012           |                                               |          |                    |           |              |
|     | NYTILIDAE          | 7+JUVENILE                  | 10.7           |                | 4000.0         | 1.2             | <u>• ≤ [ /</u> _ |               | .067           | • • • •                                       | .0001 .4 | 0001               | b£ a      |              |
| _   | VENERGIDA          | 7-JUVENILE                  | 128.8          | - · · ·        | 10.2           | ·····           |                  | <u>1040</u>   | _+ <u>010-</u> | •00                                           | .0010    | 0                  | .00       |              |
| _   |                    | 7-JUVENILE                  |                | - !!!!         | 120.8          | <u>+2+Z</u>     |                  | - 1060        | +004           | <u>.00                                   </u> |          | <u>0</u>           | 00        | <u></u>      |

.

.

- -

-----

-----

· · · ·

. .

;

• •

,

| FEINER | THIC  | PLANKTON | AHALYSIS |
|--------|-------|----------|----------|
| *****  | ***** | *******  | ******** |

~

## -UMMARY TABLE, PAGE 4

*,* .

× 1

- - -

.

۲

.

| ר ה | URGANISM NAME    |                       | • 1                                    | UMAERSZI          |                    | *            |                 | WEIGHT      | GRAMS /N++3 |             | AVG. 8  | IDHASS             | • PERCENI          | 46F5         |
|-----|------------------|-----------------------|----------------------------------------|-------------------|--------------------|--------------|-----------------|-------------|-------------|-------------|---------|--------------------|--------------------|--------------|
| 1   | PAPTS CUDE       | LH-STAGE              | TuTAL                                  |                   | RANGE              | 5.n. •       | TOTAL           | ,MEAN       | RANGE       | S.D         | MEAN    | 5.0.               | + ABUN-<br>+ DANCE | 810-<br>MASS |
| -   | COPBICHLA SP.    |                       | 110.6                                  | _ 1.5_            | 106-5              |              |                 |             | NIG         | -03         | .0207   | .0340              | .00                |              |
|     | ACARINA          | 7-112771115           | 248.1                                  | 3.4               | 298.1 -            | 33.2         | .025            | .000        |             | 00          | .0001   | Q                  |                    | .06          |
| -   | ACAPINA          | H-ADULT               | 77,3                                   |                   | 1.8                |              |                 | .000        | NFG         | .00         | .0001   | 0                  | .00                | .02          |
|     | ACARINA          | C-J/A HOSTX           | 76.5                                   |                   |                    |              | +0n#            | <u> </u>    | .002-       | .00         | +0001   | 0                  | .00                | . 02         |
|     | DIAPHANOSJA BRA  | CHYUPOM<br>7-JUVENTEF | 610.1                                  | 0,1               | 7.3 -              | 5.5          |                 | -001        | NFG         | <u>, uğ</u> | .0001   | .0000              | .02                | .09          |
| • - | DIAPHANDSONA BRA | CHYURUM<br>R-ABULT    | 151.7                                  | 4.2               | 12.0 -             | 14.3         | ,016            | .000        | .001-       | .00         | .0001   | Q                  | 01_                | .04          |
| . • | DIAPHANUSOMA BRA | C-J/A MOSEX           | 32.7                                   |                   | 11.1 -             |              |                 | .000        | .001-       | .00         | .0001   | 0_                 | 00                 | <u>•01</u>   |
| -   | DAPHNIDAF        | 7-JUVENILE            | <u>41.u</u>                            | <u>•</u> •        | 14.0 -             | 1.5          | •000            | .000        | NEG.        | .00         | .0000   | 0000.              | 00                 | 00           |
| -   | DAPHNIA SP.      | 7-JUVENILE            | 7355.0                                 | 102.2             | 2.9 -              | 545.0        | <u>. 1</u> 3ø_  | 500.        | NEG         | . 01        | .0000   | .0000              | .27                | . 34         |
| -   | DAPHNIA SP.      | S-ADULT               | 19.3                                   |                   | 14.3 -             | 2.3          | + ov (          | •000        | NEG.        | •00         | .0000   | 0                  | .00                | .00          |
| -   | DAPHNIA SP.      | A-JUV+ANULT           | 27278.2                                | 400.4             | 151-6 -<br>18604-7 | 2:10.1       | .125            | .002        | .001-       | .01         | +0000   | .0000              | 1.07               | .31          |
| -   | DAPHILIA SP.     | C-J/A HOSEX           | 1853.5                                 | 25.7              | 1774-1             | 203.3        | .039            | .001        | NFG         | 0u          | -0000   | •0000              | .07                | .10          |
| -   | DAPHNIA SP.      | L-FGG-C FEM           | 12,0.5                                 | 17.4              | 465.1              | 74.4         | .077            | .001        | .602-       | .00         | .0001   | .0000              | .05                | .19          |
| -   | DAPHNIA PULER    | 7- JUVENILE           | 34.5                                   | • 6               | <u> </u>           | 4.5          |                 | .000        | .001-       | 00          | _0001_  | Q                  | .00                |              |
|     | DAPHNIA PULEK    | B-ADULT               | - 44.7                                 |                   | 1,6 -              |              |                 | .000        | NEG         | •00         | .0001   | .0000              | .00                | .01          |
| -   | DAPHNIA PULIX    | A- JUV+ADILT          | 128.0                                  | 2.2               | 41.6 -             | 14.6         | .007            | .000        | .002-       | .00         | .0001   | .0001              | .01                | .02          |
| -   | DAPHNIA_PULEX    | C-J/A NOSEX           | 56.8_                                  |                   | <u> </u>           | <u> </u>     |                 | .000        | NEG.        | 00          | -0001   | ,0000              | 00                 | 01           |
| -   | DAPHNIA PULEX    | L-1 66-C FF4          | <u>45.</u>                             | 6                 | 19.9               | 1.0          | •0v4            | .000        | NEG         |             | 0001    | .0000              | .00                | .01          |
| -   | DAPHILA POSTA    | 7-JUVENTEL            | 308.7                                  | 4.7               | 197.0              | 74.R         | .012            | <u>+0un</u> | .002-       | +00         | 0001_   | • <u>0 0 0 0 _</u> |                    | 03           |
| -   | DAPHNIA BUSEA    | 8-ADULT               | 642+4                                  | <u>q.5</u>        | 244.1              | <u>19, Z</u> | 042             | <u>001</u>  | NFG.<br>025 | 00          | .0000   | .0000              |                    |              |
| -   | DAPHNIA PUSEA    | A-JUV+ADILT           |                                        |                   | 2907.0             | _ 148,8      | 12 <sup>p</sup> |             |             |             | _•0000_ |                    |                    |              |
| -   | DAPHNIA RUSEA    | C-J/A NOSEK           |                                        |                   | 47.8               |              |                 |             | .077        |             |         |                    |                    |              |
| -   | DARANIA CALLA    | 1-66-C FEN            | <u>91910</u>                           |                   | 232.6              | 47.03        | <u> </u>        |             | .012        |             |         | 10000              | <u>+ ¥Z</u>        | <u>+¥/_</u>  |
| -   | DARNUTA CALCATA  | 7-JUVLMILF            | ************************************** | _ 13 <sup>-</sup> | 340 0              | _ +++*       |                 |             | .005        | 00          |         |                    |                    |              |
| -   |                  | 6- 400F 1             | J 677.17_                              |                   | 244.1              |              |                 | טטניי       | .025        |             |         | ¥-                 | •¥Å                | <u> </u>     |

 $\Box$ .  $\Box$ 

•

•

Erlocidade 20460 in Adresses

......

.. ..

- - -

### SPHMARY TABLES PAGE 5

• •

| J                           |                  |             | _             |              |              | •                     | *                   | • •   |                 |              |      |
|-----------------------------|------------------|-------------|---------------|--------------|--------------|-----------------------|---------------------|-------|-----------------|--------------|------|
|                             |                  |             | 1.4.4.3       |              | <b>MET</b> _ | , VET AHT E           | <u>G&amp;/N++3</u> |       | ANG. ALUMASS    | PERCEN       | AGES |
| PARTA CODE                  | HETAVE + FUTAL   | 31.44       | PANCE         | 5.2          | TOTAL        | BEAN                  | RANGE               | 5-0-  | р<br>№ ЖЕХМ К.М | * ABUN-      | 810- |
| DAPHNIA GALEATA             | 25an - 25an - 25 | 1           | 108.0         |              |              |                       |                     |       |                 |              |      |
| /IIL-A                      | /+ADULT          |             | 1203.2        | 4.49711      |              |                       |                     | 90    | 00000000        | 09           |      |
| DAPHHIA GALEAIA             | A13+2            | î, <u>4</u> |               |              | <u>v02</u> _ |                       | NEG                 | 00    | 00000000        | • 01         | • 01 |
| DAPHRITA GALEATA            | 1.7.2            | 1           | 132.1         | n - A        | .006         | . 0/ 0                | .001                |       |                 |              |      |
| DARMNIA VETROCHUKA          | -C FEN           |             | 66.8          |              |              | 1222                  | .003                | 198   | <u>+</u>        |              |      |
| 7-100                       | INTER NOL        | ,13.7       | 246.1 -       |              |              | 000                   | .005-               | .00   | .0000 .0000     |              | .08  |
| DAPHINIA RETROCURVA         | 1043505          | 232.2       | _17:2 =       | 1030.0       |              | .001                  | 1025<br>NEG         | .00   | .0000 .0000     | . 4.2        |      |
| A-JIV<br>Daphnia petrucurva | +ADULT           | •           | 5581.4        |              |              |                       | .023                |       | -13480 -10440   |              |      |
| C-J/A                       | NOSEX            | • • •       |               | · · · · 2+ 4 |              | <u>+</u> ₽ <u>₽</u> ₽ |                     | .00   | .0001 .0000     |              | 01   |
| DAPHNIA PETROCURVA          | 69L-2            | 6.0         |               | 29.0         | 030          | .000                  | NEG -               | .00   | .4001 .0000     | .02          | .07  |
| DAPHNIA PARYULA             |                  | . 1         | 155.0         | 1 7          | 00.2         |                       | .012                |       |                 |              |      |
| L-LGU                       | -C FEM           |             | 14.1          |              |              |                       |                     | 00    | 00010           |              | 00   |
| 11101 FFF103 SP-            | - <u>23, u</u>   | e.ª         | 23.0 -        | 21?          |              | 1000                  | -+02-               | .00   | .0001 0         | .00          | .01  |
| LLYNCHYPTUS SP.             | 49.5             |             |               | 4.7          | .005         | .000                  | .00Z                | -03   | 0001 0          |              |      |
| HOLEYPTUS SP.               | LT               |             | 33.4          |              |              |                       | .003                |       |                 |              |      |
| C-174                       | NUSER            |             |               | 13.4         | -014         | 000                   | <u>NEG,</u>         | .0.   | <u>.0001 0</u>  |              | 01   |
| ILVUCKYPTUS SP.             | +9.3             |             | 49.3 -        | 4.8          | .005         | +000                  | .005-               | .00   | . 3001 0        | .00          | - 01 |
| CEFIDDAPHNIA SP.            | -6 FCA<br>976.2  | 13.6        | 49.1          | 47 4         | 434          | 000                   | .005                |       |                 |              |      |
| 7-104                       | FHILE            |             | 100,A         |              |              | •000                  | NEG                 | .00   | .0000 .0000     |              | .09  |
| CEPTUDAPHNIA SP.            | 16:3             | <u> </u>    | <u></u>       | 1.9          | .001         | .000                  | NEG -               | .00   | .9001 0         | 00           | . 00 |
| · CEPIUDAPHNIA RELICULATA   | 02.6             | . 4         | 2.0 -         | 4.3          | .005         | .040                  | NEG.                | - 110 |                 |              |      |
| CERTODARONIA RETICULATA     | LŤ               |             | 33.4          |              |              |                       | .003                |       | 10001 10000     |              | 92   |
| A-JUY                       | ADULT            |             | <u>83.1 -</u> | 9.8          | - 002        | -010                  | -200.               | .00   | .0000 0         | .00          | •01  |
| CEPIDDAPHNIA RETICULATA     | 30.0             |             | 30            | 4.7          | ,001         | .000                  | .001-               | .00   | .0000 0         | .00          | .00  |
| CERIODAPHNIA KETICULATA     | NUSER            | . 6         | 36.0          |              |              |                       | .0.1                |       |                 |              | 104  |
| 1-160-                      | -C FEM           |             | 33.4          |              | -004         | .000                  | NEG                 | .00   | .0001 0         |              | 01   |
| CERIUDAPHNIA QUARKANGULA    | 407.9            | 6.5         | 407.7 .=_     | 51.1         | .003         | .000_                 | 001                 | .00   | .0000 0         | .02          | .01  |
| CEREDPAPHNIA QUADRANGULA    | 11.9             |             | 967.9         | 1.4          | 001          |                       | .003                |       |                 |              |      |
|                             | 40SEX            |             | 11.9          |              | 1001         | 1000                  | .001                | 00    | .0001 0         |              | 00   |
| Let Gu-                     | C FFN            |             |               |              | 104          |                       | NEG -               |       | .0001_0_        |              | .01  |
| BUSHINA SP.                 |                  |             | 6.H +         | . 8          | .000         | .000                  | .003<br>NEG         | - 00  | .0001 0         | 00           |      |
| BUSMENA SP. 2-NAUF          | 2113             |             | 6.8           |              |              |                       | NEG.                | _190  |                 | <u>•</u> ¥¥  |      |
| 7- JUVI                     | NILE 3211.0      | 44.0        | 2095.4        | 320.7        |              | .002                  | NEG -               | -07   | 0000 + 0000     |              |      |
| BOSMINA SP.                 | 2019.0           | 36.4        | 11.4 -        | *37.2        |              | .000                  | NEG                 | .00   | .0000 .0000     | .10          | .07  |
| <u>BUSHINA SP.</u>          | .T 57857.0       | 803.6       | 19.4.7        |              |              |                       | .025                |       |                 | £ <b>A V</b> |      |
| A-1044                      | ADULT            |             | 7187.0        | 11121        |              |                       | NEG/=               |       |                 |              |      |
|                             |                  |             |               |              |              |                       |                     |       |                 |              |      |

......

. . . .

------

.

\_

| GRGANISM NAME       |                    |              | MICROETES & | <u>4••1</u>    |            |              | HEIGHIJ. | <u>GRAMS/M++3</u> |         | AYG. B | I UMA S.S.        | • PERCEN | IAG          |
|---------------------|--------------------|--------------|-------------|----------------|------------|--------------|----------|-------------------|---------|--------|-------------------|----------|--------------|
| PAPTS COOL          | . EP-STAGE         | ∗<br>♥ TuJAL | MLA'I       | PANUL          | 5.3+       | TOTAL        | MEAN     | RANGE             | S=D=. + | MEAN   | S . D             | .DANCE.  | е.<br>В      |
| BUSHINA SP.         |                    | 5001+Q       | 40+Z.       | 10.1 -         |            | .15 1        | 1002     | NEG               | 01      |        | .0000             | 18       |              |
| BUSHINA SP.         | L-ITA HISLK        | 15329.9      | 214.9       |                |            |              | 4006     | NEG               | 02      | .0000  | .0000             | .58      | _ <b>1</b> - |
| EVADNE NOR TRANKI   | 1-100-C FFR        |              |             |                |            | .094         | 999      | 004               |         |        | <u> </u>          | 00       |              |
| рарон 50.           | 7-1025 115         | 327.12       | 3.6         | 257.5 -        | 32.1       | • 00 •       | .000     | -009-             |         | .0000  | 0                 | .01      |              |
| раван растриаематов |                    |              | يدوق        | 214.0          | 25.3       |              | .000     |                   |         | .0000  | 0                 | 01       |              |
| ALONA SPA           | 7-109-011          | 14.0         |             |                |            | ,002         | .000     | NEG               |         | . 0001 | <u>     0    </u> | 00       |              |
| ALDNA SP.           | hea Bill T         | 1244.3       |             |                | 112.9      |              | +997_    | .008-             | 01      | .0001  | .0000             |          | r            |
| ALUNA SP.           | Cella NOSEA        | 51.9         | <u>• •</u>  | <u>i+* =</u>   | 215        | ±904         | .000     | NEG               | .00     | .0001  | .0000             |          | f            |
| ALONA SP.           | 1-LUN-C FER        | 77.5         | <u> </u>    |                | <u>9e}</u> |              | .000     | -800-             | ,00     | ,0001  | . <u> </u>        | .00      | ť            |
| ALONA GUTTATA       | n=+DULT            | 37.8         |             |                |            |              | .000     | NEG               | .00     | .0001  | 40000             | .00      |              |
| ALANA GUTIATA       | C-J/A NOV I        | 174.0        | <u> </u>    | 24.0-          | 17.8       | 07           | .0-0     | NEG               | .00     | ,0000  | .0000             | .01      |              |
| ALUNA QUADRANGULAP  |                    | 14.0         | , <u>s</u>  | 2,0 -          | 1.4        | 001          |          | NEG -             | •00     | .0001  | Q                 | .00      |              |
| CHYDOPUS SPHAERICUS | d=4 DitL T         | 754.5        | 10.5        | 250.1          | 34.4       | .044         |          | NEG               | .40     | .0000  | .0000             | 03       | <b>_</b>     |
| CHYDORUS SPHAERICUS | C+J/A LOSEY        | 116+3        |             | <u>6.1</u> -   | ٩.7        | .004         | *00Ú     | NEG               | .00     | .0000  | •0000             |          |              |
| CHYDOPUS SPHAERICUS | 1-166-6 FEM        |              | 1           | <u> </u>       | <u>+6</u>  |              | .000     | NEG.              |         | .0001  | 0                 | +QU      |              |
| LEVOIGIA QUAUKANGU  | APIS<br>7-JUVENIEF | ¢ + 1        | <u>•1</u>   | <u> </u>       |            | <u>, ü0u</u> | ,000     | NFG.              | .00     | .0000  | 0                 | .00      |              |
| LEYDIGIA QUADRANGU  | APIS               | 118.3        | 1.0         | 2.0 -          | 13.7       | + v 12       | .000     | NEG               | .00     | .0001  | 0                 | .00      |              |
| LEYDIGIA QUADRANGU  | C-J/A NOSEX        | 71.2         | 1.0         |                | 216        | .007         | +940     | .004              | ,00     | .0001  | ,0000             | .00      | 1            |
| ALONELLA SP.        | L-LUU-C FLY        | <u> </u>     | +2          | 33.4           | 3,9        | 1203_        | .000     | .003-             | + 00    | 0001_  | 0                 | 00       | 1            |
| -FUDDCOPA           | 7-JUVENILE         | 16+1         |             | 3,6 -          | ,9         | +001         | .000     | NFG               |         | -0001  | +0000             | .00      |              |
| PUPDCOPA            | C-J/A NOSLX        | 76.2         | <u> </u>    | 6.0 -<br>53.2  | 6.5        |              | .000     | NFG               | .00     | .0001  | .0000             |          | •            |
| LIMNOCYTHERE SP.    | -ADULT             | - 1627.1     | 22.9        |                | _199.9_    | +¥27         | 1000     | .027-             | .00     | .0000  | 0                 | 06       | 1            |
| LIMNUCYTHERE SP.    | C-J/A NOSEX        | 1523.0       | -1-4        | 32.7 -         | 175.6      | . 006        | .000     | NEG               | .00     | .0000  | .0000             | .06      |              |
| CANDONA SP.         |                    | 11.2         |             | <u>77</u> .> - | 9.1        |              |          |                   |         | .0001  | Q                 | .00      |              |

....

.

• •· •· •· • • •

.----

-----

× \*

.

.

•

-----

\_ . . . . .

TERTSCHTHER PERMIT AUGEVEL

,

. . . . . . .

----

|    | - LEISENTH!C PLANK!<br>- ****************** | 1.14 AAAAE ¥114       |              |          |               |              |             | 5044ARY | TABLE, PA      | GE 7    |             |              |              |                |          |
|----|---------------------------------------------|-----------------------|--------------|----------|---------------|--------------|-------------|---------|----------------|---------|-------------|--------------|--------------|----------------|----------|
|    |                                             |                       |              |          |               | -            |             |         |                | • • • • |             |              |              |                | · · ·    |
| 1  | UKGANICH NAME                               |                       |              | AUGUER L | /#**3         | <u>.</u>     |             |         | <u> </u>       |         | . AVG. 81   | 22ANG        | • PERCEN     | TAGES          |          |
|    | PAPT2_CODE                                  |                       | t Tatel      | . MLAN   | MANGE         | 5.2. •       | TUTAL       | HEAN    | DANCE          |         |             |              | . ABUN-      | 810-           |          |
|    | Cuprpona                                    |                       | -*           |          |               |              |             |         |                | 344     | ."          | 5 . <u>1</u> | <u>DANCE</u> | <u>82 AM</u> _ | ·        |
|    |                                             | F-Current I           | )<br>)       |          | 3+ <u>4</u> 5 |              | • ¥0ª _     |         | NEG            | .00     | .0001       | Q            | <u></u>      | 62             |          |
|    | COPEPODA                                    | H-1 -2                | 1-1-0        | 2.0      | 11            |              | <u>U</u> Go |         |                | .00     | .00u0 .     | 0000         |              |                |          |
|    | CALANUIDA                                   | H-100 (M31            | 2174.2       | 10.0     | 64.1          |              |             |         | +003           |         |             |              |              |                |          |
|    | C 41 410 104                                | 2-NAUPLIJS            |              |          | 2360.5        |              | •946        | 090     | <u></u>        |         |             | 0000         | .19          | <u> </u>       |          |
|    | CALANDIDA                                   | C-J/A NOSEX           | 92.0         | <u>1</u> |               | 10.0         | •001        | .000    |                |         | .0000       | a            | .00          | .00            |          |
|    | CALANDIDA                                   |                       | 169316.4     | 2151.5   |               | 1905.2       | . 517       | -007    | .001           |         |             |              |              |                |          |
|    | CALANUS SP.                                 | F-C0P(P00↓0           | 1            |          | 66206.9       |              |             | . 1991  | .172           |         |             | 1000         | <u>6,17.</u> | 1.26           |          |
|    |                                             | F-COPEPUDID           | , <u>=</u> , |          | 122.6         | 19:2         |             | .000    |                | .00     | .0001 .     | 1001         |              | .07            |          |
|    | EUCALANUS SP.                               |                       | 10.2         | t.       | 10.2 -        | 1.7          | 01          | .000    | .020           | .00     | -0001       | •            |              |                |          |
|    | PARACALANUS SP.                             |                       | 206.4        | 2.4      | 10.2          | 20. 4        |             |         | .001           |         |             | <b>V</b>     |              |                |          |
|    | 8484C414805 55                              | U-ADULT               |              | <u></u>  | 171.7         |              |             | +000    | <u>+003-</u>   |         |             | 0000         | £§1          | 03             |          |
|    | PARACALANUS SP.                             |                       | 72.9.6       | 100.7    |               | 000.1        | .056        | +001    | .004-          | . 00    | ,0000 ,0    | 0000         | . 26         | . 1 6          |          |
| •  | PAPACALANUS SP.                             |                       | 1034.7       | 19.9     | 34.7 -        | 117.9        | . 05 3      |         | .033           |         |             |              |              |                |          |
|    | PARACAI ANIS PARVIS                         | . <b>F-</b> ¢02620910 |              |          | 1000.0        |              |             | - 4991  | .050           |         |             | 000          | .04          | 13             |          |
|    | asheriya inir tu,                           | A-JUV+ADULT           | 400.4        | 6./      | 724 1 -       | 34.8         | .020        | .000    | .010-          |         | .0000 .0    | 000          | 02           |                |          |
|    | PSEUDUCALANIDAE                             |                       | 200+2        | 2.9      | 69.4 -        | 18,2         | .007        | .000    | 010ء<br>د 103- | . 00    |             |              |              |                |          |
|    | CLAUSOCALANUS PAPA                          | PERGENS               | 337.3        | 4.7      | 134.8         |              |             |         | . 003          |         |             | <u></u>      |              |                |          |
|    | 61 MIE DE 41 MIE 4 MIE                      | N-ADULT               |              |          |               |              | 010         |         | 010-           | .00     | . 0000      | <u>e</u>     | -91          |                |          |
| •  | CLAUSULALANUS PAKA                          | A+ JUV+ADUA T         | 240.3        |          | 674.4 -       | 34.9         | 010         | .000    |                | .00     | .0000       | 0            | - 01         | . 07           |          |
| ٠. | CIENOCALANUS VANUS                          |                       | 81.0         | 1        | 290.4         | 9.4          | 00)         | 000     | .010           |         |             |              |              |                |          |
|    | CTENUCALANUS VANUS                          | 8-ADULT               |              |          | 81.6          |              |             |         |                | .00     | .0000       | Q            | 00           | 00             |          |
| -  |                                             | A-JUV+ADULT           | (1,2         |          |               |              | .001        | .000    | .001-          | .00     |             | 0            | .00          |                |          |
| •  | MICROCALANUS SP                             |                       | 179.5        | 2.5      | 172.4 -       | - 21.1       | .006        | .000    | .001<br>.005-  | . 00    | 0000        | •            |              |                |          |
| -  | PSEUDOCALANUS SP.                           | C-JAA DUSER           | 1×0-1        | 2.0      | 179.4         |              |             |         | 06             |         |             |              |              |                |          |
|    | ASEUDOCAL MULE CO                           | L-ADULT               |              |          | 65.8          | <u>1 e 1</u> |             | 1000    | +001-          | .00     |             | 000          |              | 03             |          |
|    | FREODUCALANOS SP.                           |                       | 1109.3       |          |               |              | 014         | +000    | .001-          | .00     | .0000 .0    | 000          | . 04         | .03            |          |
| -  | PSENDUCALANUS SP.                           |                       | 12.0         | •?       | 12.6 -        | 1 - 4        | 001         | 000     | 010            | •••     |             |              |              |                |          |
|    | POEUDOCALANUS A.P.                          | 6-006160010           |              |          | 12.0          |              |             | + 000   | .0012          | .00     | .0001       | <u> </u>     | 00           |                |          |
| -  |                                             | L-LGG-C FER           |              | .,       | _44.3 -       | 5.1          | • 005       | _+0v0   |                | .+92_   |             | _Q           |              | .01            |          |
| -  | CENTROPAGES ADDURD                          | HAL 15                | 197.0        |          | a9.1 -        | 15.0         | . 002       | .000    | .005<br>NEG.=  |         |             | 000          | •            |                |          |
| _  | DIAPTONUS SH.                               | F-LUPLPODIA           | 2205.1       | 36.4     | 48.0          |              | *****       |         | NFG.           | -TAÅ    | . 19009. 10 | 242          |              |                |          |
|    | 01 +0 TONUE - CO                            | C-ADULT               |              |          | 1040.5        | 127.9        | , UP6       | .,001   | NFU            |         | .0001 .0    | 000          |              |                |          |
| -  | DIAP TOPOS SP                               |                       | 7051.        | 22.5     | 42.0 -        | 89.2         |             | . 000   | NEG            | .00     | .0000 .01   | 000          | -06          | . 05           |          |
| _  | DIAPTUMUS SP.                               | = 400000L1            | 12535.5      | . / 4. 1 | 4 5. 5        | 645.2        | . 11.       | 007     | .008           |         |             |              |              |                |          |
|    |                                             | F-CUPE PODID          |              |          | 27.40.7       | 17.215       | 1117        |         | . 746.+        | .999    | *666×"*88   | 202          |              |                | <u>-</u> |
|    |                                             |                       |              |          |               |              |             |         |                |         |             |              |              |                |          |

- -

-- -- - . .

.

. . .... .....

۰.

**B**-29

| -        | CELECATALC PLACENE  | ( AHHLYS <u>)</u> |          |          |                    |                  |                | SUMMARY  | TABLER PI    | LGE Ø      |          |          |             | - • • • • •  |
|----------|---------------------|-------------------|----------|----------|--------------------|------------------|----------------|----------|--------------|------------|----------|----------|-------------|--------------|
| ۱,       | A DESANISH NAME     | · <u> </u>        | *        | NUMBERSY | <u></u>            |                  | •kt T          | LEIGHT.G | RAHS/H++     |            | • AVG. 8 |          | • • • • • • |              |
|          | PAPT3 CUDE          | LH-21405          |          | - ML AH  | R A HGL            | ۲ <sup>0</sup>   | TOTAL          | MEAN     | RANGE        | 5.0.       | . HEAN   | 5.0.     | ABUN-       | BIO-<br>MASS |
|          | DIAPTOHUS SP.       | 1-1-66-C FCH      | 145+8.   | 2 . 7    | 1.9                | <u>19+</u> +     | ,020           | .040     | NFG          | 100        | .0001    | 0        | .01         | .05          |
|          | DIAPTOMUS FRANCISCA | NUS<br>4-ADULT    | 122.9    | 4.7      | <u></u>            | - 10.3           | 004            | .000     | 012<br>      | .00        | .0000    | Q        | .00         | .01          |
|          | DIAPTONUS NOVANEXIC | ANUS              | <u></u>  | 4+2.     | 41.0               | 7.0              | .005           | .000     | NFG          | .00        | .0001    | .0001    | ,00         | •01          |
|          | DIAPTORUS ASHLANDI  | U-ADULT           |          | <u> </u> | 12.0               | - 25.5           | .048           | .000     | NEG          | •00        | .0000    | .0000    | 01          | .02          |
|          | LPISCHURA NEVADENSI | S-APULT           | 1117-0   | 12.9     | 23.0               | - 129.0          | .013           | 4000     | .003         | .00        | +0001    | .0001    |             | .06          |
|          | EPISCHURA NEVADENSI | 5<br>F-CAPEPODID  | 1124.5   | 20,1     | 1459.2             |                  | .003           | .000     | <u>.003-</u> | .00        | .0000    | 0        |             |              |
| ء<br>لا  | LPISCHURA NEVADENSI | S<br>L-LGG-C FEM  | 243.2    | 3.4      | 243.2              | - 29.7           | .003           | .000     | 003          | 100        | .0000    | 0        |             |              |
| 1        | EURYTEMOPA AFFINIS  | 8-ADULT           | 1999-6.7 | 2717.0   | 1.H .              | - 10236.9        | 5,294          |          | _NFG+-       | .35        | 10000    | 0000     | 7,29        | 12.94        |
| 1        | EDPTIEPHRA AFFINIS  | F-COPL PUPID      | 377751.0 | 2240.5   | 1.8<br>118304.8    | - 191:7.5        | 3.644          | .051     | NEG          | .16        | .0000    | 0000     | 13.78       | 8.91         |
| I        | EURTIFHUMA AFFINIS  | L-LGG-L FEM       | 24042.7  | 133.7    | 12093.0            | 1563.9           | .557           | .004     | NFG -        | .03        | ,0000    | 0000     |             | 1.30         |
|          | ALARTIA CLANST      | F-COPEPUDIO       | 12700.3  | 4/0.5    | 4000.0             | 763.9            | .105           | .001     | NFG.~        | .01        | .0000    | 0000     | ,46         | - 26         |
|          | ACARTEA CLAUSS      | -ADULT            | 1304.2   | 102.0    | 2832.0             | 482.3            | .184           | .003     | NEG          | ,01        | .0001    | 0000     | .27         |              |
|          | ALARTIA CLAUSI      | A-JUV+AOULT       | 1740 7   |          | 944.2              | <u>- 111.7</u> . | .004           | .000     | .004-        | .00        | .0000    |          | ,03         | .01          |
| -        | ACARTIA LUNGIRENIS  | F-CUPE FUDIO      | <u> </u> |          | 741.3              | ·                |                | .000     | .025         | .00        | .0000    | 0000     | .06         | . 09         |
|          | ACARTIA TONSA       | -AOULT            |          |          | 333.3              |                  |                | .001     | NEG          | .00        | .1001    | 0000     |             | +10          |
|          | HARPACTICOIDA       | -ADULT            |          |          | 51.1               | ·                |                | .000     | .001-        | <u>.00</u> | .0000    |          | .00         | .00          |
|          | HARPACTICQIDA       | 2-NAUPLIUS        | 700.4    | <u></u>  | 34.7               | 50.7             |                | 400      | .003         | 00         | .0001    | <u> </u> | .00         |              |
|          | HAKPACTICOLDA       | B-ADULT           | 2796.9   | .8.1     | 344.8<br>1000.0 -  |                  | .127           | .002     | .034         |            |          | 0000     |             |              |
| <u>ر</u> | _HARPACTICUIDA      | -378 NOSEX        | 601.0    | 9.2      | 1796.9             | 54.4             | EA4-2<br>. Ub3 |          | .0v0         |            |          | 0000     |             |              |
| ~        | HARPACTICOLDA       | F-COPEPUDID       | 421.9    |          | 444.2              | 5.0              | . 404          |          | .045         | .00        | . 0003   | <u> </u> |             |              |
|          | HARPACTICOLDA       | -LGG-C FEM        |          |          | 42.8               | 4.6              | . 004          | .000     | .004         | .00        | .0001 .  | ¥        | .00         |              |
|          | SCUTTOLANA CANADINS | IS                | 3720312  | 517.5    | 35.3               | 2270.7           | 492            |          | .002<br>NEG  | .02        | .0000 -  | 0000     | 1.36        | . 98         |
| -        | ACOTTULANA CAMADENS |                   | 33050.0  | - 197+1  | 15414.0<br>500.2 - | 1707.2           |                | .001     | .043<br>NEG  | .01        |          | 0000     | 1.23        | .13          |
|          | SUDITOLANA CANADENS |                   | <u> </u> |          | 31446.5<br>51¥=    |                  |                | .000     | .045<br>NEG  | .00        | 40001    |          | .00         |              |
|          |                     | - WIN MOSEL       |          |          | <b>4.</b> 0        |                  |                | _        | NFG.         |            |          |          |             |              |

\_\_\_\_\_

\_\_\_\_

.

•

•

B-30

.

•

|     | - EPIGENTHIC PLANER IN AN       | 46721J              |          |                   |                 |                 |                 | сначаят  | TAULER PAG  | E 4                                    |                  |            |                               |                                        |
|-----|---------------------------------|---------------------|----------|-------------------|-----------------|-----------------|-----------------|----------|-------------|----------------------------------------|------------------|------------|-------------------------------|----------------------------------------|
| 1   | URGANISH MAN                    |                     | •        | 40*9 <i>61.4</i>  | · • • • •       | •               | VET             | FUTCHT.C |             | •••••••••••••••••••••••••••••••••••••• | ··· ·· ··        |            |                               | · ·· · · · · · · · · · · · · · · · · · |
| t   |                                 | L11- <u>5</u> 1 Aut | • TUTAL  | 21, 51            | RANGE           |                 | 107AL           | MEAN     |             | .9.                                    | , MEAN S.        | 0. • 0     | LE KEENI<br>I BUN-<br>I BNC F | AGES                                   |
|     | SCATTOLANA CANADENS IS          |                     | 122535.7 | 2117.2            | 12.0            | - <u>6934.6</u> |                 | 1000     | NEG -       | .02                                    | 0040 00          | 0.0        | 5.56                          | _1.11                                  |
|     | SCOTTOLANA CANADERS IS          | GUEL FIN            | 433-0    | <u></u>           | 119-0           | - 69.2          | .0.7            | .0ý)     | .0v3        | .0ú                                    | .0001 .00        | 00         | 03                            |                                        |
|     | ECTINOSOMATIUAL 0-AC            |                     | 192497+2 | 2673.0            | 9,9<br>15*348.8 | - 10305+0       | 1+345           | 1019     | NEG.        | -11                                    | .0000 .00        | 00         | 7.02                          | 3.29                                   |
|     | ECTINOSONATIDAE                 | IV + ADUL T         | 202319.2 | _ <u>29</u> •0•0_ | 216+5           | - 20133.7       | 1.176           | •016     | NFG         | .11                                    | .0000.00         | 00         | 7.38                          | 2.78                                   |
|     |                                 | A NOSEX             | <u> </u> | - •1              | 4.1             | ,×              | • 999           | .000     | NEG.        | -00                                    | .0001            | 0          | .00                           | .00                                    |
|     | ECTINOSOMATIDAE                 | 140 400 10          | 94818.8  | 1316.0            | 34 7            | - 7014 2        |                 | .040     | .003-       | 103                                    |                  | 9          | .00                           |                                        |
|     | ECTINOSANATIONE                 | 6-C FFM             | 24212.5  | 330.1             | 50232.6         | - 2280.7        | . 187           |          | NFG         | .02                                    | <u>00, 0000.</u> | 0 <u>0</u> | 3.46                          | 1.11                                   |
|     | ECTINOSOMA SP.                  | TING PR             | 136.0    | 1.4               | 15004.7         | - 15.4          | .001            | .000     | .043<br>NEG | .00                                    | .0000            | <u></u>    | . 00                          |                                        |
|     | ECTENDEONA SP.                  |                     | 204.1    | 2.8               | 130.0           | - ?4.1          | .601            | .000     | NFG         | .00                                    | .0000            | .0         | .01                           | .00                                    |
|     | ECTINOSOMA SP.                  | PEPILITO            | 10.3     |                   | 204.1<br>16.3 · | 1.9             | .001            | .000     | NEG         | .00                                    | .0001            | ٥          | .00                           | .00                                    |
| :   | TACHIDIIDAE 8-AD                | ULT                 | 147.5    |                   | 142.5           | 16,8            | + 0-01          | +000     |             | .00                                    | ,0000            | Q          | .01                           | .00                                    |
|     | TACHIDIIDAE<br>F-Cu             | PEPUUID             | 1000.0   | 13.9              | 1000.0          | - 117.9         | .033            | .000     |             | •00                                    | .0000            | 0          | .04                           | ega                                    |
| . ' | ALGIDITORE L-EG                 | G-C FER             | 11.9     | .?                | 11.9            | - 1.4           | • • • 01        |          | .001-       | .00                                    | ,0001            | 9          | .00                           | .00                                    |
|     | MICROARTHRIDIUN LITTORA         |                     | 10152.7  | 164.5             | 7441.9          | - 1209.7        |                 | .004     | .001-       | .02                                    | .000.00          | 00         | .76                           | ??                                     |
|     | A-JU<br>MICROARTHRIDION LITTOPA | V + ADULT           | 1796.9   |                   | 7000.0          | 143.7           | .135            | .001     | +050        | .01                                    | .000. 0000.      | <u>00</u>  | .30                           |                                        |
| • . | NICROARTHRIDIGH LITTOPA         | A HOSEX             | 443.3    | 6.2               | 698.5<br>6.0 -  | 47.7            | +020            | +000     | .090<br>NEG | .00                                    | .0001 .000       | 20 <u></u> | .07                           | <u>•21</u>                             |
|     | F+CU<br>NICROARTHRIDIUN LITTOPA | PEPDNID             | 2730.4   | 31.0              | 350.9           | 100.5           | •112            | ,002     | .012<br>NEG | .01                                    | .0001 .000       |            | .08                           | .27                                    |
| •   | TACHIDIUS THTANGULARIS          |                     | 1735.0   | 132.2             | 1,00.0          | - 696.8         | .182            | .001     | +050<br>NEG | ,01                                    | .0000 .000       | 00         | .30                           | .45                                    |
| • . | TACHIDIUS TRIANGULARIS          | V-ADULT             | 1940.9   | 27.1              |                 |                 | +005            | .000     | .093        | .00                                    | .0000 .000       | 0          |                               | .01                                    |
|     | TACHIDIUS THIANGULARIS          | G-C-FFM             | 50.3     |                   | - H.7 -         |                 | - <u>• 00 2</u> | .000     | NEG         | •00                                    | .0001 .000       | ) ()       | .00                           | .01                                    |
| -   | TACHIDIUS TRIANGULAPIS<br>U-DAY | TING PA             | 41.0     | 1.1               | 46.3 -          | · · · · · ·     | .002            |          | NFG         | ±00                                    | .0000 .000       |            |                               | .00                                    |
| • • | LAOPHONT (DAT                   | uit                 | <u></u>  | 1.0               | 40.0 ~<br>04.1  | <u>9.7</u>      | . 605           | +000     | .002-       | .00                                    | .0000 .000       | 90         | • 90                          | •01                                    |
| -   | A-AD                            | ULT                 | 104.0    | <u> </u>          |                 | · <u>11.1</u>   | .014            | .000     | NEG         | •••                                    | -0991 -000       | 0          | ,01                           |                                        |

. .....

....

.

------

and the second sec

- -

---- ----

EPIGENTHIC PLAN-FOR MARYSES

-----

-----

### SUMMARY TABLE, PAGE 10

...

۰.

| UNGANISH NAME           |               | •        | NUMBERSZ                               |                          |                    |                | WE IGHT. | GRANS/M++   | 3             | • 116. |          |                 | ·· ·· ·· · · · · · · · · · · · · · · · |
|-------------------------|---------------|----------|----------------------------------------|--------------------------|--------------------|----------------|----------|-------------|---------------|--------|----------|-----------------|----------------------------------------|
| PARTS LODE              | LII-STASS     |          | MEAN                                   | PANGE                    | ،<br>• • • • • • • | Tut <u>al.</u> |          | RANGE       | 5.0.          | + HEAN | 5.0.     | ABUN-     DANCE | =010                                   |
| LAGPHONTIDAE            |               | 3,4      |                                        | .3.9 ~                   |                    | .000           | .000     | NFG         | - 00          | .0001  |          |                 |                                        |
| CYLLINDKOPSYLLIDA       | L-166-C Fam   |          |                                        | 1.9<br>                  | 37.3               | - 033          | .000     | NEG.        |               |        | ¥_       |                 |                                        |
| CYLLINDROPSYLLIDA       | 8-AOULT       | .0.2     | . 1                                    | 333.3                    | 1.2                | 001            |          | .033        |               | ANAAT  | 9        |                 | .00                                    |
| CYLL INDRIJPSYLL TOAL   | C-4/A NOSEY   |          |                                        | 10.2                     |                    |                |          | .001        |               | 0001   | 9        | • 90            | •00                                    |
| PARALEPTACTATUS S       | L-EGU-C FEN   |          |                                        | 323.1                    |                    |                |          | .033-       | .00           | .0001  | 0        | .01             | .00                                    |
|                         | -ADIILT       | 674.4    |                                        | 240.1                    | 29.2               | .025           | .000     | NEG         | .00           |        | .0000    |                 | . 06                                   |
| PARALIPIASIALUS S       | L-LGG-C FFM   | <u> </u> | ł                                      | <u> </u>                 | 1.0                | . 401          | .000     | NFG -       | •00           | .0001  | 0        | 00              | +00                                    |
| NITOCHA SP.             | H-ADULT       | 3.4      | • U                                    |                          |                    | +000           | .000     | NFG -       | ,00           | .0401  | 0        |                 | .00                                    |
| NITOCKA SP.             | I-LOG-C FEN   | 301.3    |                                        | 53.2 -                   | 29.0               | .030           | .000     | -005-       | .00           | .0001  | . 0      | .01             | .07                                    |
| TE TRAGONICIPITIDAE     | A-2 DU1 7     | 00.H     | . 8                                    | 30.4 -                   | >.0                | .006           | .000     | -620        | +00           | .0001  | 0        | .00             | •01                                    |
| TETRAGONICIPITIDAL      | 5-ADUL1       | 60.0     |                                        | 30.4<br>60.n -           | 7,7                | .003           | .000     | .003        | .00           | .0001  |          | . 00            |                                        |
| CLETUPIDAL              | F-COPFPODID   | 35.0     |                                        | 60.8                     | 4.7                | .001           | - 000    | .003        |               |        | ¥        |                 |                                        |
| CLETODIDAE              | C-118 NU7EX   | 16.2     | . 1                                    | 35.0                     |                    |                |          | .001        |               | 10000  | 0        | .00             | .00                                    |
| NUNTERANALA JADENS      | F-COPEPODID   | <br>     |                                        | 10.2                     |                    |                | .000     | .001-       | • 90          | .0001  | <u> </u> |                 | .00                                    |
| HUNTEBANNES JANENS      | B-ADULT       |          |                                        | 41.2                     |                    | 005            | .000     | NEG         | 00            | 0001   | .0000    | .00             | .01                                    |
| - INVITEDRATING AND COL | F-COPCPLUID   |          |                                        | <u> </u>                 | 1.0                | .001           | .000     | NEG.        | . <u>.</u> Qu | .0001  |          | .00             | .00                                    |
| BRIULARPIUS SP.         | 6-ADULT       | 3184.0   |                                        | 12.9 =.                  | 213.6              | ,229           | .003     | NFG         | • 0Z          | 10001  | .0000    |                 | .26                                    |
| BRYDCAMPTUS SP.         | L-LGG-C FEM   | 9.8      | <u> </u>                               | <u> </u>                 | .9                 | +001           | ,000     | NEG.=       | ,00           | .0001  | 0        | .00             | .00                                    |
| ALTHEYELLA SP.          | He ADUIT      | 706.9    | <u>6.4</u>                             | <u>l</u> *               | 29.0               | <u>,03</u> 8   | .001     | NEG.<br>NEG | .00           | .0001  | .0000    | .02             | .09                                    |
| ATTHEYELLA SP.          |               | 41.9     | •2                                     | 11.7 -                   | 1.4                | ,001           | ,000     | .023        | .00           | .0001  | 0        | .00             | .00                                    |
| CYCLOPOIPA              | C-STA HUSER   | 12013.4  | 100,01                                 | 11.9<br>23 <u>93.6</u> - | 1425 2             | ,093           | .001     | .001        | .01           | .0000  |          |                 |                                        |
| CYCLOPOIDA              | 2-NAUPLIUS    | 15.0     | 3                                      | 12093.0                  | 1.5                | .002           | .000     | .093        |               |        |          |                 |                                        |
| CORYCALUS ANGLICUS      | F-CUPE POD 10 | 309.3    | ***3                                   | 10.2                     | 29.0               |                |          | .001        |               |        | U        |                 | 100                                    |
| CUPYCALUS ANGLICUS      | S-ADULT       |          | ······································ | 234.3                    | £?\$ <u>¥</u>      |                |          | +001-       | 100           | +0001  | .0000    | .01             | .05                                    |
|                         | F-COPL PUD IN |          |                                        | 59.0                     | (10                |                | .000     | .006-       | 00            | +0001  | 0        |                 | .01                                    |
|                         | T_UGA+VULT    | 004.9    | 12.0                                   | #64.9<br>#64.9           | 101.9              | .002           | .000     | .002-       | .00           | .0000  | 0        | .03             | .00                                    |
| LILLUFS SP              | F-COPEP-010   | 20785.4  | 372.0                                  | 11.4 -                   | 1001.3             |                |          | NEG         | .02           | .0000  | .0000    | 98              | 1+19                                   |
| _EYCLOPS_VERMALLS       | 2-HAUPLIUS    | 17.1     |                                        | 17.7 -                   |                    | .002           |          |             | .00           |        | 0        |                 |                                        |
|                         |               |          |                                        | 11+1                     |                    |                |          | .002        |               |        |          |                 |                                        |

. . . . .

----

. . . .

· --

-----

-- .

| EPINENTOIL PLANNT    | ]ii: nlin£¥s?;<br>•••••              |                |                      |                      |         |               | SIMMARY     | TABLES PAG    | GE 11  |         |                 |         | · · ·        |
|----------------------|--------------------------------------|----------------|----------------------|----------------------|---------|---------------|-------------|---------------|--------|---------|-----------------|---------|--------------|
| + DRGANISH HARE      | ····-                                |                | .butber.sy           | P.1.3.               |         | <u>WET</u> _  | HEIGHTAN    | GRANS/M++3    |        |         | 2.24Mass        | PERCENT | AGES         |
| 1 PART & SUUL_       |                                      | . THTAL.       | 4644                 | RANGI                | . 5.2   | 10TAL         | HEAN        | . RANGE       | •<br>• |         | .s.p.           | + AdUN- | BTD-<br>MASS |
| CTELOPS VERNALIS     | 6-ABULT                              | <u></u>        | - <del>- ()</del>    | 4.5 -<br>1720.9      | 42419   | . 1244        | 1046        |               | .02    | 0001_   | 0000            |         | 4 <u>2</u>   |
| TIELOPS VERNALIS     | A-JUV+ADULI                          | 57210-5        |                      | 13953.5              | 2-3-2   | 286           |             |               |        | _0000   | 0000            | 2.16    | 70           |
| CYCLUPS VERNALLS     | C-J/A HOSEX                          | 95+ <u>K</u> _ |                      |                      |         |               |             | -909-         | - 99   | -0001   | <u>_</u>        | .00     |              |
|                      | F-COPF POD IN                        | 712-6          | 10.2                 | 2790.7               | <u></u> |               | 006_        | NEG           |        | +0991   | 10002           |         | 1.07         |
| CYCLUPS BICUSPIDAT   | L+1 GU-C FFH                         | 2509.4         | 3217                 | 248.1<br>            | 159.6   |               |             | .025          |        |         | <u>. 2000 _</u> | 03      |              |
| CYCLUPS ALCUSPINAT   | BHADULT<br>US THEMASI                | 39237.7        | 545.0                | 930.2                | 114.7   |               | 005         | .093          | .01    | .0000   | .u000           |         | <u>00</u>    |
| CYCLOPS BICUSPIDAT   | US THURAST                           | 1924-2         | <u></u>              | 4051.7               |         | .091          | .001        | .045<br>HEG   | .01    | .0001   | 0               |         |              |
| LICLOPS RICUSPIDAT   | US 1-001AS1<br>F=C 0P+ PG0 10        | 0521.7         | 90.0                 | <u>33.</u> +         | _ 2,9.0 |               | .003        | .090<br>NEG   | .01    | .0000   | 0000            |         | . 57         |
| CYCLOPS BICUSPIDAT   | US THOMACI<br>L-EGG-C FER            | 044.3          | <u> </u>             | - <u>6,2</u> -       | 7       | <u></u>       |             | NEG           | .00    | .0001   | 0000            | 4.92    | .10          |
| RESOCYCLOPS EDAX     | 0-ADULT                              | 15.0           | £.                   | <u> </u>             |         | 002           | .000        | NFG           | .00    | .0001   | 0               | 00      | 00           |
| PAKACYCLUPS FIMBEL   | N-ADULT                              |                | <u>1,9</u>           | 248.1                | 29_13   | Q2H           | .900        | NEG           | .00    | _0001   | 0               |         |              |
| DITHONA SP.          | F-C 0P1 PL0 ID                       | 1220.4         | 17.0                 | 17.7                 |         |               | <u>_000</u> | .002-         | 00     |         |                 | •00     | 00           |
| DITHONA SP.          | 7-JUVENILE                           |                |                      | 1226.4               | 1.3     | .001          | .0u0        | .010<br>NEG.+ |        | .0001   | ¥               |         | 02           |
| UTTHUNA SP.          | 8-A DULT                             | 706.5          | 10.0                 | 11.2<br>             | 90,3    | .001          | 1000        | NFG.          | .20    | .0000   | _ <u></u> .     | .03     | + <u>2u</u>  |
| WETHUNA SP           | C-J/A NDLEX                          | 49.2           | 1.4                  | 760.5<br><u>97.2</u> | 11.7    | 1010          | .000        | .001<br>.010- | .90    | .0001   | 0               | .00     | .02          |
| OLTHONA SP.          | F-CuPiPUDIU                          | 1000-2         | <u></u>              | 19.3<br>1500.0       | 231.8   | , <u>06 R</u> | .001        | .010          |        | .0000.  | 0000            |         |              |
| BALANDADADA          | A-JUV+ADULT                          |                | <u></u>              | 4343.3 -             |         |               |             | 033           | • 09   | .0000   | <u> </u>        | 16      | 08           |
| BALAHOPORPHA         | 2-NAUPLINS                           | 770 4          | 1052.9               | 34000.0              | 4962.0  | . 369         | .005        | .093          | 01     | .0000 . | 0000            | 2.70    | . 90         |
| BALANUS SP.          | 6-640×65                             |                | -2 <sup>0920</sup> - | 333.3                |         |               |             |               |        |         | 0000            |         |              |
| MYSIDACE A-MYS LDA   | 6-ADIILT                             | >3.0           | ?                    |                      |         |               | +001        |               | . 01   | +1099   | 0019            |         | 16           |
| ACANTHOMYSIS MACKUE  | 2 11:01 1111<br>2212<br>34 1001 1115 |                | 1                    | 20.4                 | 2.4     |               | ,001        | .053          |        |         | 0053            | .00     |              |
| ACAN THUM YSIS MACKU |                                      | <u>b</u> .)    | . ••                 | 0.05                 | + 1     | • 0 * 6       | +991        | .050          |        |         | Q111            | .00     |              |
| ·                    |                                      |                |                      | 2.0                  |         |               |             | .033          |        |         |                 |         |              |

. -

.

-----

.

× 1

ź

•

.

B-33

.

-----

\_\_\_\_

. . .

• •

EPTERTALC PLANNER ANALY TO

-----

-

- -

\_\_\_\_\_

E

\_---

·····

.

.....

• `

.

|                                                           |            |                                         |                                       |                                       |            |             |          | • • •••       | ••••••                                  |                   |                                        |   |
|-----------------------------------------------------------|------------|-----------------------------------------|---------------------------------------|---------------------------------------|------------|-------------|----------|---------------|-----------------------------------------|-------------------|----------------------------------------|---|
| DRGANISH NAME                                             | •          | NUSBERSZE                               |                                       |                                       | а£т.       | WE LOHT . C |          |               | ANG. BIOMASS                            |                   | T 46 6 8                               |   |
|                                                           | •          |                                         |                                       | •                                     |            |             |          |               |                                         | * * * * * * * * * | 810m                                   |   |
| PARTS CODE LH-STAGE                                       | + 1.1TAL   | ffic Ati                                | RANGE                                 | 5.0. •                                | TOTAL      | H. AN       | RANGE    | 5.0.          | MEAN S.O.                               | A DANCE           | MY26                                   |   |
|                                                           |            |                                         | *******                               |                                       |            |             |          |               |                                         |                   |                                        |   |
| ACANTHONYSIS MACHUPSIS                                    | . 5        | •0                                      | .5 -                                  | . 1                                   | .007       | .000        | .007-    | . 0.0         | .0112 0                                 |                   | 03                                     |   |
| L-Fug-C FIN                                               |            |                                         |                                       | · ···· . · · · · · · · ·              | 1351       |             |          |               | 14123 4                                 |                   |                                        |   |
| ANCHARGNYSTS GREAKTTREE                                   |            |                                         |                                       | a                                     | 107        | 0.1.1       | 1007     |               |                                         | ••                |                                        |   |
|                                                           |            |                                         | <u>+</u>                              |                                       |            |             |          |               | *0005 *0414                             |                   |                                        |   |
| A J CHAR (1998) (C. C. C | ,          |                                         | 2.0                                   | •                                     |            |             | .050     |               |                                         |                   |                                        |   |
| ARCHALON 1313 OR CONTINUES                                |            |                                         |                                       |                                       | <u>+99</u> | 000         |          | *00           | .0100 0                                 |                   |                                        |   |
| C-J/A BUSEX                                               |            |                                         | • •                                   |                                       |            |             | .004     |               |                                         |                   |                                        |   |
| NEGUISIS NEKCEDIS                                         | 49213      | C.0                                     | <u>+1</u>                             | 23.4                                  |            | +011        | ,00Z-    | +04           | +0069 +0146                             | ±02               | 1.95                                   |   |
| 7-JUVLNILE                                                |            |                                         | 133.7                                 | _                                     |            |             | .310     |               |                                         |                   |                                        |   |
| AEGHTSIS MERCEUIS                                         |            | 2.1                                     |                                       | 7,3                                   | 1 20       | 1217        | .003-    | <u>. 05 .</u> | .0257 .0468                             |                   | 2,94                                   |   |
| o-ADULT                                                   |            |                                         | 44.3                                  |                                       |            |             | • 299    |               |                                         |                   |                                        |   |
| NEUMININ NERCEDIS                                         | 130.4      | 1.9                                     |                                       | 10.2                                  | , A30      | .01?        | .000-    | .02           | .0105 .0056                             |                   | 2.92                                   |   |
| A−JUUL+¥ULT                                               |            |                                         | ¢0.0                                  |                                       |            |             | .359     |               |                                         |                   |                                        |   |
| NEDWYSIS MERCEUIS                                         | 17.8       |                                         |                                       | 1.0                                   | +421       | .000        | .003-    | .02           | .0343 .0277                             |                   | 1.03                                   |   |
| L-F66-C FcM                                               |            |                                         | 7.0                                   |                                       |            |             | .093     |               |                                         |                   |                                        |   |
| NEOMYSIS INTEGER                                          | 16.1       |                                         | <u> </u>                              |                                       | .023       | .001        | .001-    | .01           | .0225 .0247                             | .00               | .13                                    |   |
| 7-JUVLNILL                                                |            |                                         | 10.0                                  |                                       |            |             | .050     |               |                                         |                   |                                        |   |
| NEDMYSIS INTEGER                                          | 10.H       | • ?                                     | .0 -                                  | 1.7                                   | .044       | .001        | .003-    | . 03          | .4329 .0376                             | .00               | .11                                    |   |
| 8-ADULT                                                   |            |                                         | 10.0                                  |                                       |            |             | .033     |               |                                         |                   | ······································ |   |
| NEONYSIS INTEGER                                          | .9         | .0                                      |                                       | • 1                                   | • 011      | .000        | - 011-   | - 00          | .0120 0                                 | .00               | .03                                    |   |
| A~ JUV+ADUL T                                             | • /        | ······································  |                                       | ······                                |            |             | .011     |               | 10110 0                                 | • V V             |                                        |   |
| NEUMYSIS INTEGER                                          | .7         | - 0                                     | · · · ·                               |                                       | . 017      | .000        | .003-    | . 00          | 0444 0194                               |                   | 63                                     |   |
| Les GG-C FEM                                              |            |                                         |                                       |                                       |            | 1000        |          |               | 10400 10153                             | 100               | 1¥3                                    |   |
| LEUCON SP                                                 | 1-1-0      | 2-1                                     | n. 5 -                                | 11.4                                  | 010        | 000         |          | • •           |                                         |                   |                                        |   |
| 7. 1.19. 21                                               | 1 41 10    |                                         |                                       |                                       | +035       | .000        |          | 00            | •0002 •0001                             |                   |                                        |   |
|                                                           | 16.4       | 1                                       | 10.7 -                                |                                       |            | 0/10        | .030     |               |                                         |                   |                                        |   |
| de ADULT                                                  | 10,2       | **                                      |                                       |                                       | +001       |             | +001+    | ÷UQ           | <u>.0001 0</u>                          | • 00              | ,00                                    |   |
| LENCON SO                                                 |            |                                         | 10+2                                  |                                       |            |             | +001     | • •           |                                         |                   |                                        |   |
| - LE VE UN OF                                             | 10.0       |                                         | 10.2 *                                | 1,8                                   | .004       | .000        | ,001-    | .00           | <u>.0001 0</u>                          | .00               | . 01                                   |   |
| C-J/A NUSEA                                               | -          | _                                       | 30.4                                  |                                       |            |             | .003     |               |                                         |                   |                                        |   |
| SAPURIA CHIURUR                                           |            | <u> </u>                                |                                       | <u> 0</u>                             | ,024       | .000        | .003-    | 00            | _+1+17 +0#25                            | .00               | .07                                    |   |
| Z-JUVENILE                                                | -          |                                         | •1                                    |                                       |            |             | .025     |               |                                         |                   |                                        |   |
| SAPUKIA ENIONON                                           | .?.        | • • • • • • • • • • • • • • • • • • • • |                                       |                                       | +077       | .000        | ,023-    | .00           | 1202 0                                  | .00               | .06                                    |   |
| C-J/A NOSEX                                               |            |                                         | • 2                                   |                                       |            |             | .023     |               |                                         |                   |                                        |   |
| CUROPHIQM IP.                                             | 1474.0     | 20.5                                    | 1.0 -                                 | 117.5                                 | 309        | .004        | NEG      | .03           | .0001 .0002                             | .05               | .75                                    |   |
| 7-JUVLAILC                                                |            |                                         | 930.2                                 |                                       |            |             | .200     |               |                                         |                   |                                        |   |
| COROPHIUM SALMONIS                                        | 1414.4     |                                         | L+2 +                                 | 107.4                                 |            | .008        | NEG      | .06           | .0155 .0343                             | .04               | 1.43                                   |   |
| 7-JUVLNILE                                                |            |                                         | 904.9                                 |                                       |            |             | 679      |               |                                         |                   |                                        | · |
| COPOPHIUM JALMONIS                                        | 5.3        | . 1                                     | .1 -                                  | 1.0                                   | .010       | .040        | - 001-   | .00           | -0453 -0066                             | .00               | - 02                                   |   |
| 8-ADULT                                                   |            |                                         | 1.7                                   |                                       |            |             |          |               | ENNAR ANNOT.                            |                   |                                        |   |
| CURUPHIUM SALHDNIS                                        | 1. 10.0    | 15.7                                    | 1110.0 -                              | 1 33.2                                |            | .014        | .000     | . 12          |                                         | <b>0</b> 4        | 7 44                                   |   |
| 11604 + 101 L T                                           |            |                                         | 1130.6                                |                                       | 4776       |             |          |               | 0007 0                                  |                   |                                        |   |
| COPPRISE SALMONTS                                         | 1.4        | 2                                       | 1.1                                   | -                                     | 0.64       | 000         | 4440     | 20            |                                         | ~-                |                                        |   |
|                                                           | <u></u>    |                                         | ·                                     |                                       |            |             | <u>+</u> | *AA           | • • • • • • • • • • • • • • • • • • • • |                   | .01                                    |   |
| CURTER THE SAL BOSTS                                      | ,          |                                         | L • "                                 |                                       |            |             | +004     | • •           |                                         |                   |                                        |   |
|                                                           | ···        | •¥                                      | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |            | 000         | 001      |               | 02000                                   |                   |                                        |   |
| ETGUTU FET                                                | <b>.</b> . |                                         | 1                                     |                                       |            |             | +001     |               |                                         |                   |                                        |   |
| T INTERIAND STADLARDE                                     |            |                                         |                                       |                                       | 000        |             | NEG      | <b>.</b> 00   | .0001 0                                 |                   | 00                                     |   |
| F-JUVIALLE                                                |            |                                         | 3.4                                   |                                       |            |             | NFG.     |               |                                         |                   |                                        |   |
| URANDAUT APINICURNE                                       | 1.4        | ••••                                    |                                       |                                       | · 020      |             | 001      |               | .0550 .0636                             |                   | 66                                     |   |
| 8-APULT                                                   |            |                                         | . 7                                   |                                       |            |             | .025     |               |                                         |                   |                                        |   |
| TAVIZORAUNARIZ 251                                        |            |                                         | 3. 7                                  | 105.9                                 | 107        |             |          |               | .0000 .0151                             | .03               | . 10                                   |   |
| オーよいなどんだして                                                |            |                                         | 89d :                                 |                                       |            |             | .093     |               |                                         |                   |                                        |   |
|                                                           |            |                                         |                                       |                                       |            |             |          |               |                                         |                   |                                        |   |

.

ι

 $\Box$ .  $\Box$ 

| C1 | EPIDENTOIC PLASELD  | 14 AHALEST'<br>494444944 |                                        |                     |                       |                                       |              | 511/14ARY | TABLE, PAGE | = 13         |                |          |              |
|----|---------------------|--------------------------|----------------------------------------|---------------------|-----------------------|---------------------------------------|--------------|-----------|-------------|--------------|----------------|----------|--------------|
|    | DEGANISH NAME       |                          | !L                                     | шя эси з / <u>5</u> | ***3                  |                                       | kI           |           | GRANS/N++1  | •            | AVG. BIUNASS   | • PLACEN | AGES         |
|    |                     | ., EN-STAGE              | • FATAL                                | 96311               | KANUÉ                 | 5.D.                                  | TUTAL        | MEAN      | . RANGES.   | . 0 <b>.</b> |                | + ABUN-  | -018<br>2240 |
|    | EOGAMMARUS CUNFERV  | 100LUS                   | - ¥4,0                                 | 112                 | 8.2 -                 | .9+7 .                                |              |           |             | .00          | 0002           | .00      | <u></u>      |
|    | EJGANMARUS SP.      | 7-JUVLNILE               | _17412                                 | 2510                |                       | 115.1                                 | 100          | .002      | 001         | .91          | .0006 .0016    |          |              |
|    | EUGARMARUS OCLAIRI  | 7-JUVENTEF               |                                        | •• •                |                       |                                       |              | 000       |             | .00          | .01330         |          |              |
|    | EJGANMARUS OCLAIRI  | T_UGA+VUL-A              | 10.1                                   | ?                   |                       | <u> </u>                              | .184         | .023      | .025-       | .01          | .0164 .0096    | .00      | \$\$         |
|    | EUHAUSTOPIUS SP.    | C-J/A NOSEX              | <u> </u>                               | <u></u> 0           | <u> </u>              |                                       | .093         | .000      | .001-       | . 00.        | .08330         | .00      | 01           |
|    |                     | 0-LARVA                  | 224,H                                  | 3+1                 | 132.9                 | 18.9                                  | , 002        | ,000      | .001-       | ,00          | .0000          |          | .00          |
|    |                     | 4-HL GAL UP              | 10.2                                   |                     | 10.2 -                |                                       | .010         | .000      | .010-       | ,00          | +9910 0        | .00      | .02          |
|    | CRANCON FRANCISCUR  | 7-JUVENILF               | ······································ | <u></u>             | 1                     | . ,0                                  | 014          | .010      | .014        | .00          | 1250 0         |          | .03          |
|    | CRANGON FRANCISCOR  | 7-JÜVFNILF               | <u>4247</u>                            |                     | 2.9                   | · · · · · · · · · · · · · · · · · · · | 2,504        | .076      | 1.240       | • 2 4        | 13226 .3088    | .00      | 13, 45       |
|    | CANCER MAGISTER     | S-ADULT                  | <u></u>                                |                     | 44.3                  |                                       |              |           | 1.061       | •21          |                |          | 7.11         |
|    | COLLEMBULA          | 4-HEGALOP                | h.>                                    |                     | 0                     | <u>.</u>                              |              |           | .001        | .00          | <u></u>        | 00       | .00          |
|    | CULLEMBOLA          | 5-ADULT                  | P.2                                    | - <u></u>           | A.5                   | ······¥≚···<br>}.0                    | .001         | .000      | NEG.        | .00          |                |          | .00          |
|    | E PHEMEPUPTERA      | C-J/A NOSEX              | 23.0                                   | . 3                 | 8.2<br>23.0 -         | 2.7                                   | .002         | . 100     | NEG.        | .00          | .0001 0        | .00      |              |
|    | DUDNATA             | 6-LARVA                  | 2.0                                    | • •                 | 23.0<br>2.0 -         | .2                                    | . 600        | .000      | +002<br>NEG | .00          | .0001 0        |          | - 00         |
|    | ZYGOPTERA           | H-NYMPH                  | J + 4                                  |                     | 2.0                   | .?                                    | .000         | .000      | NEG.<br>NEG | .00          | .0001 0        | .00      | .00          |
|    | PLECOPTERA          | H-47884                  | 2.0                                    | •0                  | 1.6<br><u>- 2.0 +</u> |                                       | .000         | ,000      | NEG         | 0            | .0001 0        |          | .99          |
| •  | INSECTA II          | 6-1 ANVA                 | <u>+ • #</u>                           | •0                  | 1.8                   | •2                                    |              | .000      | NEG.        | ,00          | .0001 0        | ,00      |              |
| •  | THICOPTERA          | D-LAXVA                  | 1.8                                    | .0                  | L; <u>u</u>           | .,,                                   | +000         |           | NFG.        | ,0Q          | 0001 0         | .00      | .00          |
|    | CERATOPOGUNIDA:     | O-LARVA                  | 126+8                                  | 1.8                 | <u>3.6 ~</u>          | 19.1                                  | .012         | .000      | NEG -       | .0.          | .0001 .0000    |          | .03          |
| -  | CHADBORUS           | 6-LARVA                  | <u> </u>                               |                     | 1.2                   | l                                     | .093         |           |             | • <u>01</u>  | .9769 0        |          | .21          |
|    | DIPTERA-CHIKONGHIDA | 0~LAK VA                 | . 493.5                                |                     | 1.1                   | 22 <u>.U</u>                          |              |           | NEG         | .00          | .0001 .0000    |          |              |
|    | TAPDIGRAPA          | C-J/A NOSEX              | .119.0                                 | 1.7                 | 114.0 -               | _14.1                                 | .015         | <u></u>   | .012-       | .30          | <u>+9901 0</u> |          | .03          |
|    | NT ONULAL MATA      | X-CYPH.LARV              |                                        | 7.7                 | 0.2 -<br>             | 59+1                                  | •05 <u>5</u> |           | NEG         | <u>.ul</u>   | .0001 .0000    |          | 13           |
|    | 493661A 11          | 7-JUVLNILE "             |                                        | 4.4                 | 10.2 -<br>666.7       | 70 <u>+6</u>                          | •0.34        |           | +001-       | ,00          | .0001 .0000    | .02      | .08          |
|    |                     |                          |                                        |                     |                       |                                       |              |           |             |              |                |          |              |

· - ---

٠.

÷

-----

\_\_\_\_

B-35

EPINENTALC PLANET'S SURLYSIC

·

.

ж. <sup>с</sup>

.

\_\_\_\_

. -

.

·-----

.

| A DEGARIST NAME                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              |         |          |          |             |          |       |          |           |       |
|-------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|---------|----------|----------|-------------|----------|-------|----------|-----------|-------|
| T .                                                               | ·                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NN HEREN   | P#13                         |         | ¥i.I.    | JH 10/11 | GBANS/N++3  |          | AYG.  | SIDPASS  | + PERCENI | AGES  |
| PAPTS CUDE                                                        | .LH−⇒Ĩ×ψ?                                         | * Ĭutel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | els AN     | PANUL                        | \$191 * | TOTAL .  | . MEAN   | BANGE       | 5.0.     | •     |          | . DANCE   | _MASS |
| SAGITA SP.                                                        | 7- (UV) NTL 6                                     | <u>29,1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1        | 10.0 -                       |         |          |          |             | .00      |       | .0023    | .00       | +10   |
| SAGITYA SP.                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          |                              | e A     |          |          | .031<br>004 | .00      | .0100 |          | .00       | +01   |
| SAGLITTA ELEGANS                                                  | 0-400L1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              |         | +004     |          | .004        | .00      | .0001 | 0        |           | .01   |
| LARVACEA                                                          | V-JOVENILE                                        | 10,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 111.1    | .8000.0 -                    | 942.8   | .053     | .0.0     | .033-       | .00      | .0000 |          | . 29      |       |
| OIKOPLEURA SP.                                                    | C-J/A Milsex                                      | 12026.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.4      | H000.0                       |         | •069     | .001     | .033        | .01      | .0000 |          | <u></u>   |       |
| TELLOSTET                                                         | CHUTA HOSEX                                       | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .1         | 7000.0                       | . 5     | .001     | .000     | .050        |          |       | 12002    |           |       |
| TELEDSTET                                                         | 1-164                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 3.7                          | 2.3     |          |          | NEG.        |          | .0001 | <u>_</u> |           |       |
| QINERIDAE                                                         | 6-LARVA                                           | میشورین میں ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 19.3                         |         |          |          | .010        |          | .0404 | +1002    | .00       |       |
| COTTIDAE                                                          | O-LAKVA                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | +0+0                         |         |          | 1001     | .030        |          | -0028 | -0056    | .01       | .24   |
| COTTINAE                                                          | 7-JUVENILE                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                              |         |          | .000     | .014-       | .00      | .2000 | 0        | .00       | .01   |
| COTTUS ASHSD                                                      | C-J/A NOSEX                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | d                            |         | .004     |          | -800.       | .00      | .1200 | 0        | • 0 0     | +02   |
| DADOG WHE LET                                                     | D-LAPVA                                           | 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 40.0 -                       | 5.4     | .023     | .000     | .023-       | .00      | .0005 | 0        | .00       | .06   |
| PARUPHRYS VETULUS                                                 | 7-JUVINILE                                        | - <u></u> ŧÈ_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0          | ····· <u>12.*</u>            | .0      |          |          | 015         | 00       | .0902 | 0        |           | 104   |
| UNIVENTIFICO FGG                                                  | 1-EGG                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              | 24.8    | .007     | .000     | NFG         | 0        | .0000 | .0000    |           | .02   |
| UNIDENTIFIED EGG                                                  | N+Lug CASE                                        | 2.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,2        | 13.7 -                       | 13.2    | .010     | .000     | NEG         | .00      | .0001 | 0000     |           | - 92  |
| UNIDENTIFIED                                                      | CHITA HOFFY                                       | 4302.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60.0       | 6.4 -                        | 289.7   |          | .002     | NEG         | . 01     | .0000 | .0000    |           | +27_  |
|                                                                   |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              |         | <u> </u> |          | +020        |          | _     |          |           |       |
| LUTAL SUMARS IN MI                                                | NETUN CATEGOR                                     | 116 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         |          |          |             |          |       |          |           |       |
| TUTAL SUMBER UP PL                                                | ANKTUN LATEGOR                                    | 115 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         |          |          |             |          |       |          |           |       |
| TUTAL SUMBER UP PL                                                | ANKTUN LATEGOR                                    | 165 292<br>HUMBERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | .52                          |         |          |          |             | <u> </u> |       | _*       |           |       |
| TUTAL HUMBER UP PL.<br>SHANNON-VEINER DIVI<br>BRILLDUIN-S DIVLESS | ANNTUN LATEGOR<br>ERSLIY INDEN<br>ITY INDEX HASE  | 115 292<br>HUMLERS<br>BIOMASS<br>D UN NUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FRS 4      | .59<br>.40<br>.55            |         |          |          |             |          |       |          |           |       |
| TUTAL HUMBER UP PL.<br>SHANNOR-WEINER DIVI<br>BRILLDUIN-S DIVIKS  | ANKTUN LATFGOR<br>ERSLYY INDER<br>RTY INDER HASE  | 1155 242<br>HUMLERS<br>BITPASS<br>D LIN NUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>FKS 6 | .55<br>.40<br>.55            |         |          |          |             |          |       |          |           |       |
| TUTAL SUPPER UP PL.<br>SHANNOH-WEINER DIVI<br>BRILLDUIN-S DIVLKS) | ANKTUN LATFIGUE<br>ERSITY INDEX<br>ITY INDEX HASE | RIES 242<br>RUMLERS<br>BINMASC<br>D UN NUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FRS 4      | .55<br>.40<br>.55            |         |          |          |             |          |       |          |           |       |
| TUTAL NUMBER UF PL.<br>SHANNON-WEINER DIVI<br>BRILLDUIN-S DIVINS  | ANKTUN LATFGG<br>RSITY INDEX<br>ITY INDEX HASE    | 1155 242<br>HUMLERS<br>BITMASS<br>D LA NUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FKS 4      | .55<br>.40<br>.55            |         |          |          |             |          |       |          |           |       |
| TUTAL SUPPER UP PL.<br>SMANNOR-VEINER DIVI<br>BRILLDUIN-S DIVLRS  | ANKTUN LATFGOR<br>ERSITY INDEX<br>ITY INDEX HASE  | 21F5 242<br>3070<br>3070<br>3070<br>3070<br>3070<br>3070<br>3070<br>307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FKS 4      | . 55<br>. 40<br>. 55         |         |          |          |             |          |       |          |           |       |
| TUTAL NUMBER UF PL.<br>SHANNON-WEINER DIVI<br>BRILLDUIN-S DIVLKS  | ANKTUN LATFGOR                                    | 2175 242<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10 | 4<br>FRS 4 | -55<br>-40<br>-55            |         |          |          |             |          |       |          |           |       |
| TUTAL SUMBER UF PL.                                               | ANKTUN LATFGOR                                    | 2155 242<br>2000 12645<br>1000 12645<br>10 1100 12645<br>10 1100 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FRS 4      | -52<br>-40<br>               |         |          |          |             |          |       |          |           |       |
| TUTAL SUMBER UF PL.                                               | ANKTUN LATFGOR                                    | 115 242<br>100012645<br>10004645<br>1000465<br>100040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f 45 4     | • 50<br>• 40<br>• 50<br>• 50 |         |          |          |             |          |       |          |           |       |
| TUTAL SUMBER UF PL.                                               | ANKTUN LATFGGA                                    | 115 242<br>100012645<br>10004645<br>100046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>F#S 4 | - 55<br>- 40<br>- 55<br>     |         |          |          |             |          |       |          |           |       |
| TUTAL INUMBER UF PL.                                              | ANKTUN LATFGOR                                    | 115 242<br>NUMLERS<br><u>BITPAS</u><br>D UN NUMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f#5 4      | - 55<br>- 40<br>- 55<br>     |         |          |          |             |          |       |          |           |       |

B- 36

.

.

۲

\_\_\_\_
APPENDIX C. Monthly cluster dendograms of epibenthic zooplankton sampling stations and taxa in the Columbia River Estuary, March 1980 - July 1981; see Section 2.5.6 for description of classification technique. Sampling Station Clusters

•

Legend

 $\left[ \right]$ 

[]

 $\left[ \right]$ 

Π

 $\left[ \right]$ 

[]

| Code | Location              |
|------|-----------------------|
| ВКВҮ | Baker Bay Flat        |
| BRCH | Bridge Channel        |
| BRFT | Bridge Flat           |
| BRSL | Bridge Slope          |
| BWSL | Bradwood Slope        |
| CHBY | Cathlamet Bay Channel |
| EPCH | Elliot Point Channel  |
| GIFL | Guinn's Island Flat   |
| GYBY | Grays Bay Flat        |
| ILCH | Ilwaco Channel        |
| JCFL | Jim Crow Sands Flat   |
| JCSL | Jim Crow Sands Slope  |
| RICH | Rice Island Channel   |
| RISL | Rice Island Slope     |
| SISL | Sand Island Slope     |
| YGBY | Youngs Bay Slope      |
|      |                       |



.









and the second second

.



----

C--8







.

ņ



Taxa Clusters

Legend

.

 $\Box$ 

 $\square$ 

[]

j

| Code | Location                     |
|------|------------------------------|
| ACAR | Acartia spp.                 |
| ALON | Alona spp.                   |
| ATTH | Attheyella sp.               |
| BOSM | Bosmina sp.                  |
| BRYO | Bryocamptus sp.              |
| CAND | Candona sp.                  |
| CBCS | Cyclops bicuspidatus         |
| CORO | Corophium spp.               |
| CORY | Corycaeus spp.               |
| CSLM | Corophium salmonis           |
| CVRN | Cyclops vernalis             |
| DAPH | Daphnia spp.                 |
| DIAP | Diaptomus spp.               |
| ECNF | Eogammarus confervicolus     |
| ECTO | Ectinocomatidae              |
| EOGM | Eogammarus spp.              |
| EPIS | Epischura nevadensis         |
| ERYT | Eurytemora affinis           |
| HUNT | Huntemannia jadensis         |
| LAOP | Laophontidae                 |
| LEUC | Leucon spp.                  |
| LMNO | Limnocythere sp.             |
| MCRO | Microarthridion littorale    |
| MESO | Mesochra spp.                |
| NEOM | Neomysis mercedis            |
| NTOC | Nitocra sp.                  |
| OITH | Oithona sp.                  |
| PARL | Paraleptastacus sp.          |
| PCFM | Paracyclops fimbriatus       |
| PCYC | Paracyclops spp.             |
| ROTF | Rotifera                     |
| SCOT | <u>Scottolana canadensis</u> |
| TDIS | Tachidius discipes           |
| TTRI | Tachidius triangularis       |



٠



\_\_\_\_



2 197



 $\square$ 

 $\sim$ 



.











.