Energy and the Role of Shallow Tidal Freshwater Habitats for Juvenile Chinook Salmon

A.J. Storch¹, E.S. Van Dyke¹ and N.K. Sather²

¹Oregon Department of Fish and Wildlife, Clackamas, OR
²Pacific Northwest National Laboratory, Sequim, WA
Background

- Shallow water habitats in the tidal freshwater portion of the LCRE are thought to be important

- Empirical evidence has been sparse

- Energetic implications have received little attention…
Project Goal and Objectives

Goal:

- Identify energetic implications of residence in tidal freshwater habitats in the LCRE

Objectives:

- Growth
- Conversion
Sampling Design

Legend
- Main channel site
- Off channel site
Approach: bioenergetics

Input data
- diet composition
- water temp.
- prey energy

\[P(C_{\text{max}}) = (G) = (C) - (\text{metabolic losses} + \text{waste}) \]

Sim. Cohort 1: \(G = C - \text{losses} \)
Sim. Cohort 2: \(G = C - \text{losses} \)
...
Sim Cohort n: \(G = C - \text{losses} \)
Approach: simulation cohorts

Residence period:

\[FL_i + (GR \cdot RP) = FL_f \]

\[Biomass_i = \beta_0 + \beta_1 \cdot FL_i \]

Sim. Duration

Beg. And End Mass (P[C_{max}])
Metrics

\[\frac{\Delta B}{C_{total}} \cdot 100 = \text{Gross Conversion Efficiency (GCE)} \]

\[\text{Specific Growth Rate (SGR)} \]
Results (SGR – main channel)

- **Main Channel**

 - Temperature \((^\circ C) \)
 - Simulation Day

| Mean Specific Growth Rate (g·g\(^{-1}\)·d\(^{-1}\)) |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0.00 | 0.01 | 0.02 | 0.03 |

- **Inst. Daily Temperature**

- **Simulated P(C\(_{max}\))**

- **±10% Simulated P(C\(_{max}\))**
Results (SGR – off channel)

- Mean Specific Growth Rate (g·g⁻¹·d⁻¹)
- Temperature (°C)
- Simulation Day

Graph showing the relationship between simulation day and mean specific growth rate, with temperature plotted on the secondary y-axis.
Results (GCE – off channel)

![Graph showing the relationship between simulation day and gross conversion efficiency with temperature on the y-axis and simulation day on the x-axis. The graph displays fluctuations in efficiency and temperature throughout the simulation days.]
Conclusions

- Positive growth
- Favorable efficiency
- Temperature effect
- Variability among strata
Acknowledgments

- BPA funded this research as part of the NWPCC Fish and Wildlife Program
- Project Collaborators
 - Pacific Northwest National Laboratory
 - Gary Johnson, Nikki Sather, Amanda Bryson
 - Oregon Department of Fish & Wildlife
 - Christine Mallette, Erick Van Dyke, Tucker Jones
 - National Marine Fisheries Service
 - David Teel, Paul Moran
 - University of Washington
 - John Skalski
 - Fisheries Consultant
 - Earl Dawley
- Field and Technical Support
 - ODFW Columbia River Investigations, Mike Anderson, Shon Zimmerman, Ron Kauffman, Dave Nichols
Housekeeping

- **Contact information:**

 Adam Storch
 ODFW
 17330 SE Evelyn St.
 Clackamas, OR 97015
 adam.j.storch@state.or.us

- **Further information:**

Questions
Results (daily ration)

Main Channel

Simulation Day

P(C_{max})

Temperature (°C)
Results (daily ration)

Main Channel

Simulation Day

$P(C_{\text{max}})$

Temperature (°C)

0.0 0.2 0.4 0.6 0.8 1.0

M

M
Presentation Outline

- Background
- Goal and objectives
- Sampling Design
- Approach
- Results
- Conclusions