

Assessing wetland resilience in the Columbia River estuary

May 13, 2025

Maggie McKeon¹, Heida Diefenderfer¹, Amy Borde², Shon Zimmerman¹, Jason Karnezis³,

Alex McManus³, Rod Moritz⁴, and Rachel Stolt⁴

¹Pacific Northwest National Lab
²Columbia Land Trust
³Bonneville Power Administration
⁴U.S. Army Corps of Engineers

PNNL is operated by Battelle for the U.S. Department of Energy

Past: Feedback between increases/decreases in water level and increased/decreased deposition have allowed wetlands to keep pace (Baker et al. 2010; Peterson et al., 2014)

Present: Borde et al. (2020) described current relationships between plant communities and local hydrology (frequency of inundation, tidal datums, etc.)

2

<u>Annual Rate of Water Level Change (ΔWL)</u>

<u>Annual Accretion Rate (Δz)</u>

Annual Rate of Water Level Change (Δ WL)

Sea level rise is faster than in the past **Riverflow magnitude and timing**

- Changes to basin precipitation
- Dam operations (flood risk, treaty, etc.)

Annual Accretion Rate (Δz)

~70% decrease in sediment supply to the estuary

Accretion (Δz)

A resilient wetland needs: $\Delta WL \sim \Delta z$

<u>Surface Elevation Tables (SETs)</u>

- "gold standard"
- 10 least-disturbed wetlands
- From the mouth to Sauvie Island (~150 rkm)
- Measure 4x per year
- Oldest since 2018

Sediment stakes (SS)

- •
- •

(Photos courtesy Shanon Dell)

PNNL Reference Site Study (see also Diefenderfer et al. 2021) AEMR restoration and reference site monitoring data Sediment stake pairs co-located with SETs (PNNL long-term monitoring, ongoing)

Accretion (Δz)

A resilient wetland needs: $\Delta WL \sim \Delta z$

<u>Surface Elevation Tables (SETs)</u>

- "gold standard"
- 10 least-disturbed wetlands
- From the mouth to Sauvie Island (~150 rkm)
- Measure 4x per year
- Oldest since 2018

mm/yr

Sediment stakes (SS)

- •
- •
- •

Good agreement between SET and SS accretion rates, when:

- co-located carefully in heterogeneous topo (e.g. in/out pans)
- SET pins are analyzed • separately
- measured carefully, with • same procedure and by the same folks
- there are no cows

Comparison of SET and SS Accretion Rates

PNNL Reference Site Study (see also Diefenderfer et al. 2021) AEMR restoration and reference site monitoring data Sediment stake pairs co-located with SETs (PNNL long-term monitoring, ongoing)

Changing water levels: SLR + future riverflows

- Hydrodynamic model: Delft3D-Flexible Mesh
- Bonneville Dam (rkm 240) to 30km off the coast
- Primary tributaries: Sandy, Willamette, Lewis, Cowlitz Rivers
- ~100m resolution in the estuary, ~1km offshore
- 25 vertical levels
- Water level, velocity, bed stress, salinity, suspended sediment
- SLR: 0, 0.5, 1.0, 1.5m
- Future riverflows: 10th, 90th %ile and median flows
 @ Bonneville for SCP 4.5 from RMJOCII (USACE 2020)

A resilient wetland needs: ΔWL ~ Δz

Changing water levels: SLR

- SCP2-4.5 'Intermediate' scenario NAVD88
- April-June 2009
 - Current 2yr flow
 - Growing season (ish)

A resilient wetland needs: $\Delta WL \sim \Delta z$

Changing water levels: SLR + future riverflows

- RMJOC II 10th, 90th
 %ile, and median
 flows at Bonneville
- SSP2-4.5
 'Intermediate' scenario
- April-June 2009
 - Current 2yr flow
 - Growing season (ish)

A resilient wetland needs: ΔWL ~ Δz

10

Modeled ΔWL High 1.5m, 2120 Medium 1.0m, 2095 Low 0.5m, 2070 SLR + FF 120 140

Questions? Maggie.mckeon@pnnl.gov

