The secret lives of European green crabs: Habitat utilization as revealed by acoustic telemetry

Curtis Roegner, NOAA Fisheries Zach Forster, WDFW David Beugli, Willapa-Grays Harbor Oyster Growers Association

Funding from State of Washington and NOAA Fisheries

The secret lives of European green crabs: Habitat utilization as revealed by acoustic telemetry Minimally analyzed results!

Curtis Roegner, NOAA Fisheries Zach Forster, WDFW David Beugli, Willapa-Grays Harbor Oyster Growers Association

Funding from State of Washington and NOAA Fisheries

Overview of EGC invasion

<u>PNW</u>

- First detected in SFB in 1989
- First detected in Willapa Bay in 1998
- Populations in coastal estuaries fluctuated many died out
- Good recruitment from 2015-2022
- Large breeding populations presently extant Yamada et al. 2022

Objectives: Habitat use of EGC

- 1. Acoustics in intertidal zone?
- 2. Compare inter- and subtidal residency and movements of EGC and Dungeness crab
- 3. Compare habitat use at aquaculture and uncultured sites
- 4. Identify possible migratory "chokepoints" for eradication actions

Tags and receivers

Intertidal receiver

Subtidal receiver

Movement metrics

- 1. Duration (residency vrs dispersal)
- 2. Activity (U_{AVE} , movement vrs quiescence)
- 3. Linearity = $D_{ABS} / \sum D$ (directed movement vrs meandering).

Track	Dur	NPOS	ΣD		%U _{CRIT}	
1	1.61	238	1369	0.019±0.015	36.5	0.31±0.26
2	1.09	110	2488	0.046±0.035	11.8	0.67±0.17
3	0.01	3	186	0.169±0.151	0.0	0.99±0.01

Experimental design

Treatments:

- North Array intertidal. Working bivalve aquaculture
- South Array intertidal. Oyster reef, eelgrass, burrowing shrimp
- Subtidal releases Oyster reef, eelgrass, burrowing shrimp

Tagged:

- 40 EGC 10 at each release site (equal M:F)
- 20 DC 10 at both subtidal sites (7:3 M:F)
- 1 Red rock crab (F)

Habitat at the North Array

- Oyster bag culture
- Infaunal Manila clam culture

Habitat at the South Array

- Oyster reef
- Eelgrass
- Burrowing shrimp

Results: residency

Released at NA-ST

Dungeness crab tracks

10 Oct 2022-1 Mar 2023

- Mostly subtidal
- Deep and shallow water
- High linearity

European green crab habitat use

10 Oct 2022-1 Mar 2023

- Extensive use of both sub- and intertidal
- Distributed across detection area
- Subtidal concentration along channel edge

Environmental correlates

DOY

Map crab movement to habitat features

Conclusions

Objectives: Habitat use of EGC

- 1. Acoustics in intertidal zone?
 - YES, but will need to look at detection efficiencies
- 2. Compare inter- and subtidal residency and movements of EGC and Dungeness crab
 - DC were mostly subtidal and rapidly left the study site
 - EGC utilized both IT and ST areas and some were present throughout the 5 month study period.
- Compare habitat use at aquaculture and uncultured sites
 –PRELIMINARY assessment: IT use is higher at the South Array
 –Not strongly associated with oyster bag structure
- 4. Identify possible migratory "chokepoints" for eradication actions
 - Subtidal berm: travel corridor
 - Jetty: shelter?
 - NA-ST: shallow subtidal eelgrass near tidal channel?