Integrating Lampreys into Habitat Restoration

Monica Blanchard – WDFW/USFWS
April 2023
Monica.Blanchard@dfw.wa.gov
Basic Data Gaps

- Distribution
- Abundance
- Limiting Factors
- Population Structure

- Restoration Benefits?
- Understand Habitat Use
- Understand Local Threats
- Integrate into Projects - Lamprey Lens

NOAA

Jeremy Monroe- Freshwaters Illustrated

Clemens et al. 2017
Integration in the Restoration Process

Including Lampreys at Every Step

- Pre-project assessment
- Incorporate design elements
- Implementation
Pre-Project: Pacific Lamprey Life Cycle - 12-year average lifespan

Freshwater
- Egg ~2 weeks
- Prolarva ~2 weeks
- Larva - Filter feeder ~3-10 years

Pacific Lamprey Life Cycle
- Adult - Upstream migration and holding Spring-Summer spawning ~1 year Adults die after spawning
- Juvenile - Transformation starts in Summer-Fall ~6-9 months
- Migration to the Ocean: Winter-Summer
 - Juvenile - Ectoparasite ~1-7 years

Migration to Freshwater: Spring-Summer, variable based on ecotype and location

Illustrations by Monica R. Blanchard
Pre-Project: Lamprey Presence

- Data Basin Map: Pacific Lamprey Distribution Map
 - Salmonid distribution
- Current presence of habitat types?
 - Fine sediment
 - Spawning substrate
- Site survey - multiple species/life stages present:
 - Larvae
 - Juveniles
 - Adults
Pacific Lamprey Assessment 2022

Characterizes conservation risk of Pacific Lamprey across their range

Flexible for data poor species and included threat analysis

Prioritize restoration action
Summary of Major Threats

Lower Columbia River Sub-units

Table 23. Key threats to Pacific Lamprey and their habitats within the Lower Columbia River sub-region, 2017. High = 4; Moderate/High = 3.5; Moderate = 3; Low/Moderate = 2.5; Low = 2; Unknown = no value

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Climate Change</th>
<th>Lack of Awareness</th>
<th>Dewatering and Flow Management</th>
<th>Stream and Floodplain Degradation</th>
<th>Water Quality</th>
<th>Passage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scope Severity</td>
<td>Scope Severity</td>
<td>Scope Severity</td>
<td>Scope Severity</td>
<td>Scope Severity</td>
<td>Scope Severity</td>
</tr>
<tr>
<td>Sandy</td>
<td>4 4</td>
<td>4 3</td>
<td>3 2</td>
<td>2.5 3</td>
<td>3 4</td>
<td>2.5 3</td>
</tr>
<tr>
<td>Lewis</td>
<td>4 4</td>
<td>4 3</td>
<td>4 4</td>
<td>3 3</td>
<td>3 3</td>
<td>3 3</td>
</tr>
<tr>
<td>Upper Cowlitz</td>
<td>4 4</td>
<td>4 3</td>
<td>4 4</td>
<td>3 3</td>
<td>1 1</td>
<td>4 4</td>
</tr>
<tr>
<td>Lower Cowlitz</td>
<td>4 4</td>
<td>4 3</td>
<td>3 4</td>
<td>3.5 3.5</td>
<td>2.5 4</td>
<td>3 3</td>
</tr>
<tr>
<td>Clatskanie</td>
<td>4 4</td>
<td>4 3</td>
<td>3 3</td>
<td>4 3</td>
<td>3.5 4</td>
<td>3 3</td>
</tr>
<tr>
<td>Lower Columbia</td>
<td>4 4</td>
<td>4 3</td>
<td>2.5 2</td>
<td>3.5 3</td>
<td>3.5 4</td>
<td>2.5 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Scope & Severity</th>
<th>Drainage Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Severity</td>
</tr>
<tr>
<td>4.00</td>
<td>H</td>
</tr>
</tbody>
</table>

https://www.pacificlamprey.org/rmu/
History of Loss and Simplification

- Multiple flow paths
- Lateral connectivity
- Hyporheic connection
- Large wood
- Beavers
- Riparian trees
- High flows
- Longitudinal connectivity
Encourage Complexity

- Multiple flow paths
- Lateral connectivity
- Hyporheic connection
- Large wood
- Beavers
- Riparian trees
- High flows
- Longitudinal connectivity
Design: Promote Natural River Processes

Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems – Beechie et al. 2010

Reset the pre-disturbance condition through river-floodplain reconnection

http://stagezeroriverrestoration.com/

The Beaver Restoration Guidebook, 2015: https://www.fws.gov/media/beaver-restoration-guidebook
Design: Enhance Lateral Connectivity

- Remove channel confining structures
 - Increase lateral and vertical connectivity
 - Increasing wetted area and hyporheic exchange
 - Flow path diversity
- Create diverse habitat supporting multiple life stages
 - Proximity to habitats

Figure from: Sarah Dyrdahl, Johan Hogervorst, Paul Burns, Kate Meyer, Matt Helstab, Lisa Kurian and Paul Powers, December 2016
Design: Large Wood Enhancement

Habitat Benefits for Adults and Larvae:

- Sediment Sorting - areas of depositions and erosions
 - Fine sediment patches
 - Spawning gravels/cobbles
- Floodplain Connection
- Flow Path Diversity
- Increased Cover

Not all projects are created equal:

Beyond Salmon: Lamprey use of Salmonid-Focused Habitat Restoration Projects, Methow Salmon Recovery Foundation assessment
Stage 0 Restoration

Valley Floor Reset

S.F. McKenzie River and Fivemile-Bell Creeks, OR Lamprey Occupancy Study

Using Lamprey Monitoring Methods!

Future: Quartz Creeks, OR Lamprey pre- and post-restoration study
Complexity and Scale
Design: Water Quality - Overlapping Benefits

- Clean and cold water
- Excessive sediment load detrimental
- 10+ years in freshwater
 - Bioaccumulation of contaminants
- Riparian plantings
- Fencing
- Stormwater treatment
Reduce impacts to lamprey where possible:

- In-water work periods are made to reduce impacts to SALMONIDS
 - Adults lampreys spawning or holding – interstitial spaces between rocks
 - Eggs in gravel
 - Transforming juveniles
 - Larvae in sediments – multi-year cohorts

- Alter extent of project impact or dewatering?
Implementation: Monitoring and Salvage

Salmon e-fishing settings can trap larval lamprey

https://www.smith-root.com/support/kb/setting-up-a-backpack-electrofisher-to-capture-larval-lamprey

<table>
<thead>
<tr>
<th>Bursted Slow Pulse Primary Wave Form</th>
<th>Standard Fast Pulse Secondary Wave Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>125 v</td>
</tr>
<tr>
<td>Pulse Frequency</td>
<td>3 Hz</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>25%</td>
</tr>
<tr>
<td>Burst Pulse Train</td>
<td>3:1</td>
</tr>
<tr>
<td></td>
<td>125 v</td>
</tr>
<tr>
<td></td>
<td>30 Hz</td>
</tr>
<tr>
<td></td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Lamprey Salvage Plan

- Avoid dewatering nests/redds, areas of high larval density, mussel beds - if possibly

- Have appropriate tools:
 - Fine mesh nets
 - Extra bucket and aerator – leave on site

- Slower the draw down the better
 - Increases self-rescue rates
 - 1-2” per hour

- Depending on conditions – emergence timing variable - most lamprey that are going to emerge do so in the first ~30 min (Liedtke et al. 2020)
 - In some cases it take much longer
 - Keep bucket and net on site!

- Only about 50% emerge
 - Dry shocking increases %
“Dry” Electrofishing
Implementation: Additional Dewatering Steps

1. *Conduct pre-drawdown lamprey presence/absence surveys - Use Lamprey settings!*
 - Mussels – plan for relocation

2. Perform pre-drawdown lamprey salvage – **Use Lamprey settings!**
 - Collect mussels

3. Perform pre-drawdown salvage boney fishes

4. Perform all species salvage during drawdown - **Use Lamprey settings!**

5. Perform “dry” shocking on dewatered substrates with high density of lamprey. Continue until site is completely dewatered – **Use Lamprey settings!**
 - Look for lamprey and mussels that emerge after dewatering
Online Resources: PacificLamprey.org*

*New Website!
Pre-project assessment:
- Understand habitat use by life stage
- Presence year-round
- Current project use

Incorporate design elements:
- Enhance larval and adult habitat
- “Protect the best”
- Complexity and connectivity is important
 - Lateral and vertical – restoring natural process, increase wetted area, increase sediment sorting
 - Longitudinal – migration corridors

Implementation: be prepared!
- Lamprey specific monitoring and salvage techniques
- Reduce impacts to lamprey habitat
Integrating Lampreys into Habitat Restoration

Monica Blanchard – WDFW/USFWS
April 2023
Monica.Blanchard@dfw.wa.gov
Figure 1: Estuarine salinity slowly increases as one moves away from freshwater sources and toward the ocean.