Integrating Lampreys into Habitat Restoration

Monica Blanchard – WDFW/USFWS

April 2023 Monica.Blanchard@dfw.wa.gov

Basic Data Gaps

- Distribution
- Abundance
- Limiting Factors
- Population Structure

- Restoration Benefits?
- Understand Habitat Use
- Understand Local Threats
- Integrate into Projects -Lamprey Lens

Clemens et al. 2017

Integration in the Restoration Process

Including Lampreys at Every Step

- Pre-project assessment
- Incorporate design elements
- Implementation

Pre-Project: Pacific Lamprey Life Cycle - 12-year average lifespan

Pre-Project: Lamprey Presence

- Data Basin Map: <u>Pacific Lamprey</u>
 <u>Distribution Map</u>
 - Salmonid distribution
- Current presence of habitat types?
 - Fine sediment
 - Spawning substrate
- Site survey multiple species/life stages present:
 - Larvae
 - Juveniles
 - Adults

Pacific Lamprey Assessment 2022

Characterizes conservation risk of Pacific Lamprey across their range

Flexible for data poor species and included threat analysis

Prioritize restoration action

Pacific Lamprey NatureServe Rankings 2022

Summary of Major Threats Lower Columbia River Sub-units

Table 23. Key threats to Pacific Lamprey and their habitats within the Lower Columbia River sub-region, 2017. High = 4; Moderate/High = 3.5; Moderate = 3; Low/Moderate = 2.5; Low = 2; Unknown = no value

	Climat	Climate Change		Lack of Awareness		Dewatering and Flow Management		Stream and Floodplain Degradation		Water Quality		Passage	
Watershed	Scope	Severity	Scope	Severity	Scope	Severity	Scope	Severity	Scope	Severity	Scope	Severity	
Sandy	4	4	4	3	3	2	2.5	3	3	4	2,5	3	
Lewis	4	4	4	3	4	4	3	3	3	3	3	3	
Upper Cowlitz	4	4	4	3	4	4	3	3	1	1	4	4	
Lower Cowlitz	4	4	4	3	3	4	3.5	3.5	2.5	4	3	3	
Clatskanie	4	4	4	3	3	3	4	3	3,5	4	3	3	
Lower Columbia	4	4	4	3	2.5	2	3.5	3	3.5	4	2,5	2	
Mean Scope & Severity 4.00 Drainage Rank H		3.50 H		3.21 M		3.17 M		3.04 M		3.04 M			

https://www.pacificlamprey.org/rmu/

History of Loss and Simplification

- Multiple flow paths
- Lateral connectivity
- Hyporheic connection
- Large wood
- Beavers
- Riparian trees
- High flows
- Longitudinal connectivity

Encourage Complexity

- Multiple flow paths
- Lateral connectivity
- Hyporheic connection
- Large wood
- Beavers
- Riparian trees
- High flows
- Longitudinal connectivity

Design: Promote Natural River Processes

Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems – Beechie et al. 2010

Reset the pre-disturbance condition through river-floodplain reconnection

http://stagezeroriverrestoration.com/

The Beaver Restoration Guidebook, 2015: https://www.fws.gov/media/beaver-restoration-guidebook

Design: Enhance Lateral Connectivity

- Remove channel confining structures
 - Increase lateral and vertical connectivity
 - Increasing wetted area and hyporheic exchange
 - Flow path diversity
- Create diverse habitat
 supporting multiple life stages
 - Proximity to habitats

Design: Large Wood Enhancement

Habitat Benefits for Adults and Larvae:

- Sediment Sorting areas of depositions and erosions
 - Fine sediment patches
 - Spawning gravels/cobbles
- Floodplain Connection
- Flow Path Diversity
- Increased Cover

Not all projects are created equal:

Beyond Salmon: Lamprey use of Salmonid-Focused Habitat Restoration Projects, Methow Salmon Recovery Foundation assessment

Stage O Restoration

Design: Water Quality - Overlapping Benefits

- Clean and cold water
- Excessive sediment load detrimental
- 10+ years in freshwater
 Bioaccumulation of contaminants
- Riparian plantings
- Fencing
- Stormwater treatment

Figure 4.—Important functions of a riparian area include shade for the stream, stream bank stability, woody debris for the stream, sediment retention, litter for aquatic organisms in the stream, water filtering, aquatic habitat, and riparian wildlife habitat. (Adapted from Sacramento Area Flood Control Agency.)

Project Implementation: Timing and Extent

Reduce impacts to lamprey where possible:

- In-water work periods are made to reduce impacts to SALMONIDS
 - Adults lampreys spawning or holding interstitial spaces between rocks
 - Eggs in gravel
 - Transforming juveniles
 - Larvae in sediments multi-year cohorts
- Alter extent of project impact or dewatering?

Implementation: Monitoring and Salvage

	Bursted Slow Pulse Primary Wave Form	Standard Fast Pulse Secondary Wave Form				
Voltage	125 v	125 v				
Pulse Frequency	3 Hz	30 Hz				
Duty Cycle	25%	25%				
Burst Pulse Train	3:1	X				

https://www.smith-root.com/support/kb/setting-up-a-backpack-electrofisher-to-capturelarval-lamprey

Lamprey Salvage Plan

- Avoid dewatering nests/redds, areas of high larval density, mussel beds - if possibly
- Have appropriate tools:
 - Fine mesh nets
 - Extra bucket and aerator leave on site
- Slower the draw down the better
 - Increases self-rescue rates
 - 1-2" per hour
- Depending on conditions emergence timing variable - most lamprey that are going to emerge do so in the first ~30 min (Liedtke *et al.* 2020)
 - In some cases it take much longer
 - Keep bucket and net on site!
- Only about 50% emerge
 - Dry shocking increases %

Implementation: Additional Dewatering Steps

- 1. *Conduct pre-drawdown lamprey presence/absence surveys Use Lamprey settings!
 - Mussels plan for relocation •
- Perform pre-drawdown lamprey salvage Use Lamprey settings! 2.
 - Collect mussels
- 3 Perform pre-drawdown salvage boney fishes
- people needed!! Perform all species salvage during drawdown - Use Lamprey settings! 4.
- Perform "dry" shocking on dewatered substrates with high density of lamprey. 5. Continue until site is completely dewatered – Use Lamprey settings!
 - Look for lamprey and mussels that emerge after dewatering ightarrow

Plan ahead

extra time,

equipment, and

Online Resources: PacificLamprey.org*

Best Management Guidelines for Native Lampreys During In-water Work

Living Document, Original Version 1.0 - May 4, 2020 Lamprey Technical Workgroup PACIFIC LAMPREY CONSERVATION

Lamprey Technical Workgroup

Pacific Lamprey Habitat Restoration Guide

*New Website!

Integration in the Restoration Process

Including Lampreys at Every Step

- Pre-project assessment:
 - Understand habitat use by life stage
 - Presence year-round
 - Current project use
- Incorporate design elements:
 - Enhance larval and adult habitat
 - "Protect the best"
 - Complexity and connectivity is important
 - Lateral and vertical restoring natural process, increase wetted area, increase sediment sorting
 - Longitudinal migration corridors
- Implementation: be prepared!
 - Lamprey specific monitoring and salvage techniques
 - Reduce impacts to lamprey habitat

Integrating Lampreys into Habitat Restoration

Monica Blanchard – WDFW/USFWS

April 2023 Monica.Blanchard@dfw.wa.gov

Larval Saline Tolerances

Figure 1: Estuarine salinity slowly increases as one moves away from freshwater sources and toward the ocean.

Source: Chapter 14 Salinity. Voluntary Estuary Monitoring Manual.