Modern Day Columbia River

Hydropower dams altered flows and sediment loading to the Lower Columbia River

"Greening of the river" implies that water column photosynthesis by phytoplankton has a larger role in ecosystem productivity in the modern day river

The Lower Columbia River

~ 200 km Tidal freshwater river system

The Lower Columbia River

~ 200 km Tidal freshwater river system

Portland and Vancouver metropolitan area

hoto by Unknown Author is licensed under CC BY-NC

The Lower Columbia River

~ 200 km Tidal freshwater river system
 Portland and Vancouver metropolitan area

Intertidal wetland habitat restoration

is Photo by Unknown Author is licensed under CC BY-NC

Fig. 3. (a) Chlorophyll a concentration, (b) abundance, and (c) biomass of 6 major taxonomic categories of Columbia River phytoplankton collected near Vancouver, WA (USA), from January 2005 to December 2018

Seasonal blooms and diverse phytoplankton assemblage

Vol. 87: 29-46, 2021 tps://doi.org/10.3354/ame01967 AQUATIC MICROBIAL ECOLOGY Aquat Microb Ecol

Published online June 17

Seasonal and interannual variation in lower Columbia River phytoplankton (2005–2018): environmental variability and a decline in large bloom-forming diatoms

Vanessa Rose^{1,*}, Gretchen Rollwagen-Bollens¹, Stephen M. Bollens^{1,2}, Julie Zimmerman¹

¹School of the Environment, Washington State University, Vancouver, WA 98686-9600, USA
²School of Biological Sciences, Washington State University, Vancouver, WA 08686-9600, USA

LIMNOLOGY and OCEANOGRAPHY

Quantity and quality of particulate organic matter controls bacterial production in the Columbia River estuary

Byron C. Crump ⁽⁰⁾,¹* Lindy M. Fine,² Caroline S. Fortunato,³ Lydie Herfort ⁽⁰⁾,⁴ Joseph A. Needoba,⁴ Sheryl Murdock,⁵ Fredrick G. Prahl¹

¹Oregon State University, Corvallis, Oregon

²University of Maryland Center for Environmental Science Horn Point Laboratory, Cambridge, Maryland

³Marine Biological Laboratory, Woods Hole, Massachusetts

⁴Oregon Health and Science University, Portland, Oregon

⁵University of Victoria, Victoria, British Columbia, Canada

Ecosystem-scale productivity

How can phytoplankton grow in a large flowing river?

Allan, J. D., Castillo, M. M., & Capps, K. A. (2020). *Stream ecology: structure and function of running waters*. Springer Nature.

Open water methods for measuring productivity

Is a fixed station representative of the river?

Evidence that the river is well mixed

Evidence that the river is well mixed

Direct measurements of production and respiration

Estimates of phytoplankton productivity on biogeochemical cycles

Effects of greening of the river on biogeochemical fluxes

		Bonneville	Satura OF	% Change
DOC (µmol L⁻¹)	Winter	112	300	
	winter	113	108	-4
	Spring	129	133	3
	Summer	189	191	1
	Fall	138	133	-4
		Bonneville		
		Dam	Saturn 05	% Change
Nitrate (µmol L ⁻¹)	Winter	30	32	5
	Spring	17	15	-11
	Summer	7	6	-15
	Fall	22	23	7
		Bonneville		
		Dam	Saturn 05	% Change
POC (µmol L ⁻¹)	Winter	20	15	-25
	Spring	45	53	19
	Summer	18	23	26
	Fall	18	13	-29

River flow 2010-2021 – Max, Min, Avg Units – 1000 m³/s

Large Freshet

Bonneville

BAT

Average Freshet

Small Freshet

River Temp – Large Freshet 2011,2017

River Temp – Average Freshet 2014,2020

River Temp – Small Freshet 2015,2021

days (May – Aug) when river temperature is > 19°C

Franz lake Temp – High Freshet

Franz lake Temp – Low Freshet

