Lower Columbia Estuary Program – Ecosystem Monitoring Program
2021 Annual Science Work Group Meeting

Juvenile salmon prey availability and diets, presented by: Kerry Accola
Wetland Ecosystem Team – School of Aquatic and Fishery Sciences, University of Washington
Process Salmon Prey Availability and Salmon Diets

Potential prey – Neuston and Benthic

- **Sample Methods**
 - Neuston – open water (OW) and emergent vegetation (EV), deployed from boat, top 20 cm of water, 2x/month at each
 - Benthic – cores sampled; 2” PVC pipe depth of 10 cm

- **Lab Methods**
 - Number of individuals counted in each group (order or family)
 - Blot each group dry and weigh to nearest 0.0001g
 - 2020 samples from **Feb – March**; 2020 data entry finished recently; preliminary neuston plots

Salmon Diets

- **Sample Methods**: bag seines, up to 3x/month, euthanized, frozen, whole stomachs preserved
- **Lab Methods**: Count each prey taxon; blot dry and weigh to nearest 0.0001g
- All 2020 diets were sampled in **February – March**
- All 2020 fish lengths were **30 – 59 mm**
Neuston % Gravimetric Composition: Feb - March

Emergent Vegetation

Emergent Vegetation

Open water

- Turbellaria
- Trichoptera
- Scorpaeniformes
- Ostracoda
- Oligochaeta
- Isopoda
- Hemiptera
- Ephemeroptera
- Collembola
- Coleoptera
- Araneae
- Cyclopoida
- Copepoda
- Cladocera
- Diptera
- Amphipoda
Process Salmon Prey Availability and Salmon Diets

Potential Prey – Neuston and Benthic
- **Sample Methods**
- Neuston – open water (OW) and emergent vegetation (EV), deployed from boat, top 20 cm of water, 2x/month at each
- Benthic – cores sampled; 2” PVC pipe depth of 10 cm
- **Lab Methods**
 - Number of individuals counted in each group (order or family)
 - Blot each group dry and weigh to nearest 0.0001g
- 2020 samples from **Feb-March**; 2020 data entry finished recently; preliminary neuston plots

Salmon Diets
- **Sample Methods:** bag seines, up to 3x/month, euthanized, frozen, whole stomachs preserved
- **Lab Methods:** Count each prey taxon; blot dry and weigh to nearest 0.0001g
- All 2020 diets were sampled in **February – March**
- All 2020 fish lengths were **30 – 59 mm**
\[IRI = FO \times (\% \text{ Numeric Comp} + \% \text{ Gravimetric Comp}) \]

- Dipterans -> chironomids
- Amphipods -> *Americorophium* spp.
- Cladocerans -> *Daphnia* spp.
IRI = FO \times (% \text{ Numeric Comp} + % \text{ Gravimetric Comp})
IRI = FO * (% Numeric Comp + % Gravimetric Comp)
\(IR = \frac{\text{sum of prey weight}}{\text{field weight}} \)

\(ER = \frac{\text{sum of prey energy density}}{\text{field weight}} \)

Measure fish foraging performance
Measure fish foraging performance

\[IR = \frac{\text{sum of prey weight}}{\text{field weight}} \]

\[ER = \frac{\text{sum of prey energy density}}{\text{field weight}} \]
\[J_m (\text{maintenance metabolism}) = j_m \cdot e^{dt} \cdot W \]

Represents metabolic upkeep; general assessment of habitat quality; affected by temp and body mass

\(j_m \) = mass specific maintenance costs at 0º C
\(d \) = temperature coefficient for biomass assimilation
\(T \) = water temperature in ºC; \(W \) = fish body mass

High energy, low metabolic costs = positive growing conditions (lower right)
2020 -> above average metabolic costs
Pairwise comparisons - ANOSIM

<table>
<thead>
<tr>
<th>Groups</th>
<th>R-value</th>
<th>Bonferroni p</th>
<th>Amphip</th>
<th>Diptera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell – Ilwaco</td>
<td>0.45</td>
<td>0.096</td>
<td>0.41</td>
<td>0.77</td>
</tr>
<tr>
<td>Campbell – Welch</td>
<td>0.44</td>
<td>0.006</td>
<td>0.39</td>
<td>0.73</td>
</tr>
<tr>
<td>Campbell – Whites</td>
<td>0.44</td>
<td>0.006</td>
<td>0.39</td>
<td>0.74</td>
</tr>
<tr>
<td>Franz – Ilwaco</td>
<td>0.63</td>
<td>0.042</td>
<td>0.46</td>
<td>0.91</td>
</tr>
<tr>
<td>Franz – Welch</td>
<td>0.49</td>
<td>0.006</td>
<td>0.86</td>
<td>0.44</td>
</tr>
<tr>
<td>Franz – Whites</td>
<td>0.36</td>
<td>0.006</td>
<td>0.86</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Cumulative Contr.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Amphip</th>
<th>Diptera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell – Ilwaco</td>
<td>0.41</td>
<td>0.77</td>
</tr>
<tr>
<td>Campbell – Welch</td>
<td>0.39</td>
<td>0.73</td>
</tr>
<tr>
<td>Campbell – Whites</td>
<td>0.39</td>
<td>0.74</td>
</tr>
<tr>
<td>Franz – Ilwaco</td>
<td>0.46</td>
<td>0.91</td>
</tr>
<tr>
<td>Franz – Welch</td>
<td>0.86</td>
<td>0.44</td>
</tr>
<tr>
<td>Franz – Whites</td>
<td>0.86</td>
<td>0.45</td>
</tr>
</tbody>
</table>
PerMANOVA

<table>
<thead>
<tr>
<th>Groups</th>
<th>R-value</th>
<th>Bonferroni p</th>
<th>Amphip</th>
<th>Diptera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell – Ilwaco</td>
<td>0.45</td>
<td>0.096</td>
<td>0.41</td>
<td>0.77</td>
</tr>
<tr>
<td>Campbell – Welch</td>
<td>0.44</td>
<td>0.006</td>
<td>0.39</td>
<td>0.73</td>
</tr>
<tr>
<td>Campbell – Whites</td>
<td>0.44</td>
<td>0.006</td>
<td>0.39</td>
<td>0.74</td>
</tr>
<tr>
<td>Franz – Ilwaco</td>
<td>0.63</td>
<td>0.042</td>
<td>0.46</td>
<td>0.91</td>
</tr>
<tr>
<td>Franz – Welch</td>
<td>0.49</td>
<td>0.006</td>
<td>0.86</td>
<td>0.44</td>
</tr>
<tr>
<td>Franz – Whites</td>
<td>0.36</td>
<td>0.006</td>
<td>0.86</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Pairwise comparisons - ANOSIM

- **Campbell – Ilwaco**: R-value 0.45, Bonferroni p 0.096, Amphip 0.41, Diptera 0.77
- **Campbell – Welch**: R-value 0.44, Bonferroni p 0.006, Amphip 0.39, Diptera 0.73
- **Campbell – Whites**: R-value 0.44, Bonferroni p 0.006, Amphip 0.39, Diptera 0.74
- **Franz – Ilwaco**: R-value 0.63, Bonferroni p 0.042, Amphip 0.46, Diptera 0.91
- **Franz – Welch**: R-value 0.49, Bonferroni p 0.006, Amphip 0.86, Diptera 0.44
- **Franz – Whites**: R-value 0.36, Bonferroni p 0.006, Amphip 0.86, Diptera 0.45

PerMANOVA

- **Site**: R-value 0.35, p-value 0.001
- **Year**: R-value 0.08, p-value 0.001
- **Size class**: R-value 0.06, p-value 0.002
- **Site*Year**: R-value 0.06, p-value 0.002
- **Year*Size class**: R-value 0.03, p-value 0.06
- **Site*Size class**: R-value 0.06, p-value 0.21
Summary
- Relatively few taxa are driving diet composition differences among sites
- Sites are more dissimilar than years or fish class size
- Benthic and neuston analyses coming

Next steps
- Reed canary grass manuscript – nearly ready to submit
- Future manuscript ideas?