PNW blue carbon database and the ecological effects of sea-level rise

Christopher Janousek¹, Heida Diefenderfer², Amy Borde², Scott Bridgham³, Taiping Wang², Rajiv Prasad², Craig Cornu⁴, Matthew Brand², Trevor Williams¹, Dave Sutherland³, Jude Apple⁵, Stephen Breithaupt²

¹ LCEP Science Work Group, May 2021

¹ Oregon State University
² Pacific Northwest National Labs
³ University of Oregon
⁴ Institute for Applied Ecology
⁵ Padilla Bay National Estuarine Research Reserve

LCEP Science Work Group, May 2021
PNW Blue Carbon Working Group

- Established in 2014
- Brings together natural scientists, social scientists, managers, & policy makers to advance BC science & data sharing
- Informal membership and structure, mainly operates in sub-groups around specific funded projects
- Efforts mostly based from northern CA to British Columbia
PNW Blue Carbon Working Group projects

- **PNW stocks** project (2016-2019) to quantify blue carbon stocks & start a regional database
- **Assessment of blue carbon finance project feasibility in the PNW** (2018-2019)
- Two current (2019-2023) carbon sequestration & GHG emissions projects (NOAA and NERRS Science Collaborative)
- Other recent and pending projects by UO, USGS, OSU, WWU, others
Ecological Impacts of Sea Level Rise on Flood Protection and Blue Carbon Capture in Pacific Northwest Wetlands

Research Area(s): Coastal Change / Climate Impacts on Ecosystems, Natural and Nature-based Features, Sea Level Rise, Vulnerability and Risk Assessment

Region(s) of Study: U.S. States and Territories / Oregon, Washington
Regional variation in SLR

San Diego, CA = 2.2 mm yr\(^{-1}\)
San Francisco, CA = 2.0 mm yr\(^{-1}\)
Humboldt Bay, CA = 4.9 mm yr\(^{-1}\)
Charleston, OR = 1.1 mm yr\(^{-1}\)
Astoria, OR = -0.2 mm yr\(^{-1}\)
Seattle, WA = 2.1 mm yr\(^{-1}\)

- Sea-level rise may also lead to increased salinity in coastal estuaries

Parris et al (2012), Cloern et al. (2011); NOAA (tidesandcurrents)
PNW ESLR objectives

- Model how tidal wetlands protect coastlines from flooding under a range of restoration and sea-level rise scenarios.
 - FVCOM model (PNNL)
 - Coos Bay Estuary
 - Gray’s Bay region of the Lower Columbia River Estuary
- Measure greenhouse gas (GHG) emissions and C sequestration in natural, restored, and former tidal wetlands along salinity gradients.
 - What are the blue carbon benefits of wetland restoration?
 - How may sequestration and GHG emissions change with SLR and salinity change?
- This component of the ESLR project is closely aligned with a NERRS Science Collaborative project based in several WA estuaries; that project includes an additional 15 sites.
ESLR blue carbon sites

- 12 sites in Coos Bay Estuary; 7 in Lower Columbia River Estuary

<table>
<thead>
<tr>
<th>Salinity and wetland class</th>
<th>Emergent marsh</th>
<th>Forested tidal wetland</th>
<th>Disturbed wetlands/pastures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater</td>
<td>SEC*, KAN*</td>
<td>SEC*, SEA*</td>
<td>WAS, WAS2, ALD*</td>
</tr>
<tr>
<td>Oligohaline</td>
<td>MLC*, SCS*</td>
<td>WIN</td>
<td>SAU</td>
</tr>
<tr>
<td>Mesohaline</td>
<td>FSM, DAN, KZL, KZH, FRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhaline</td>
<td>MIL, MET, MIL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Least-disturbed sites; restored sites; disturbed/non-tidal sites
ESLR blue carbon measurements

- 1. Soil carbon stocks
 - Sampled to 50 cm and every 2 cm bulk density, carbon and nitrogen content determined

- 2. Soil accretion rate
 - 210Pb, 137Cs profiles (least-disturbed sites)
 - Soil density change (restored sites; Drexler et al. 2019).
 - From C density and accretion rate, can estimate carbon sequestration rate
ESLR blue carbon measurements

- Also determining short-term soil accretion rates with feldspar marker horizons
3. Greenhouse gas emissions
 - Methane, carbon dioxide, nitrous oxide
 - Light and dark fluxes
 - ~8 measurements over the course of a year
 - First measurements spring 2021
Environmental drivers of blue carbon

Groundwater conditions

- Groundwater level*
- Groundwater salinity*
- Groundwater temperature*
- Soil temperature*
- Light flux*
- Barometric pressure*
- pH
- Elevation
- Plant cover & composition

* High frequency time series
Sampling layout at each blue carbon site
Synthesizing components of ESLR project

- PNW wetland succession model
- Wetland elevation change model
- SLR scenarios and Restoration scenarios
- Future wetland elevation
- Field data on blue carbon and GHG fluxes by wetland type, elevation, & salinity regime
- Estimate future soil carbon sequestration and GHG fluxes
Blue carbon database

- Started in ~2018 as part of PNW stocks project, with a focus on soil carbon data from Northern California to Washington.
PNW stocks project (9 estuaries)

9 estuaries

Forested tidal swamps
Tidal marsh
Seagrass

213 cores collected in the study

Kauffman et al. (2020) Global Change Biology
Blue carbon database

<table>
<thead>
<tr>
<th>Geographic scope</th>
<th>Wetland types</th>
<th>Data types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja California to Alaska</td>
<td>• Seagrass meadows
• Tide flats
• Emergent tidal marsh (freshwater to salt marsh)
• Mangroves
• Temperate scrub-shrub wetlands
• Temperate forested tidal swamps
• Pastures (former tidal wetlands)</td>
<td>• Soil carbon content and density
• Soil accretion and carbon accumulation rates
• Environmental drivers (e.g., elevation, plant species)
• Greenhouse gas emissions (chambers)</td>
</tr>
</tbody>
</table>
Database structure

- Currently flat files linked by a point ID

Diagram showing:
- C density
- N density
- bulk density
- lat/long
- position
- elev
- state/region
- salinity
- pH
- env data
- veg composition
- soil texture
- wetland type
- CH₄
- CO₂
- N₂O
- net C flux
- soil CAR
- soil AR
- GHG
- Point ID
Some summary statistics

- ~930 cores in the database (as of Jan 2021) from ~33 studies
- ~850 cores with depth-specific carbon density values
- ~240 some measure of accretion rate (usually ^{210}Pb or ^{137}Cs)
Soil carbon stocks by wetland type (preliminary)

- Tidal marshes have high, but quite variable, soil carbon stocks
- Stocks are lower in tide flat (FL) and seagrass meadows (SG)
- Median stocks are highest in temperate woody wetlands such as Sitka spruce swamps (see also Kauffman et al. 2020)
Soil carbon stocks by geographic region (preliminary)

Seagrass meadows

Emergent marshes
Accretion rates by wetland type \((^{210}\text{Pb} \text{ only})\) (preliminary)

- Recent accretion rates across wetland types are generally keeping up with recent rates of SLR in the PNW.

- Median tidal marsh accretion rate = 2.15 mm yr\(^{-1}\)

- Seattle, WA, 2.06 mm yr\(^{-1}\)

- Charleston, OR, 1.1 mm yr\(^{-1}\)
1. The database has been valuable for identifying **data gaps** regionally (wetland types, estuaries).

2. We are seeking any **new data** you may have and wish to share.

3. Two **synthesis publications** are planned for the database (funding from NERRS Science Collaborative, Pew Charitable Trusts).

4. Many of the data sets are **available** on the CCRCN’s Coastal Carbon Atlas and Figshare.
Several data sources for marshes, tidal swamps, tideflats
- Kauffman et al. (2020; unpublished)
- Diefenderfer and Borde (unpublished)
- Peck et al. (2020)
- Peterson et al. (2014)
- Petersen et al. (2003)
- ESLR project team (analyses in progress)

Given the very large size of the estuary, more data are needed on blue carbon stocks and rates of sequestration
REFERENCES

FUNDING

- NOAA NERR Science Collaborative
- NOAA EESLR grants NA15NOS4780171 and NA19NOS4780176
- OWEB 219-923-17145
- Pew Charitable Trusts

DATA LINKS

- Link to CCRCN’s international Coastal Carbon Atlas
- Figshare data releases for Kauffman et al. 2020 Global Change Biology