Conceptual framework for food web links between seabirds and fish in the estuary, plume, and nearshore ocean of the Columbia River

Presented by: Jeannette E. Zamon

Co-authors: Elizabeth M. Phillips, Troy J. Guy, Daniel D. Roby, Don E. Lyons, Ken Collis, Allen Evans, Jennifer M. Mannas and Josh Adams

TAKE HOME MESSAGES – Estuary/plume

- The estuary/plume continuum supports very large numbers of fish-eating seabirds during April – September, and the numerically dominant bird & fish species change along this continuum
- Anchovy, herring, smelt, and juvenile salmon provide most of the food resources to support birds in the estuary/plume.

 These seabird-fish interactions create an "ecological hotspot" containing multiple issues of management & conservation concern.

CONCEPTUAL FRAMEWORK – Estuary/plume continuum

The estuary region:

Columbia River where salinity >1 often occurs on a daily basis (~ rkm 0 – rkm 50; see www.stcmop.org)

The plume region:

nearshore Pacific Ocean where salinity is often < 26 on a daily basis (~ 0-50 km offshore, Grays Harbor, WA to Cape Meares, OR; c.f. Horner-Devine et al. 2009)

acific Ocean • Plume • Estuary • Tidal freshwater

Model data & images courtesy www.stcmop.org

DATA AVAILABILTY - Seabirds & fish in the estuary/plume

SURVEY	ΤΑΧΑ	YEARS WHEN SAMPLING TOOK PLACE																																
		80 8	18	2 8	33 8	84	85	86	87	88	89	90	91	92	93	94	95 9	69	97 98	99	00	01	02 (03 0	4 0	5 06	607	08	09	10	11	12	13	14
CREDDP	Seabirds, fish																																	
NOAA plume (day)	Seabirds, fish																				no k	oirds	;										XX no l	X - birds
NW forest plan marbled murrelet	Seabirds																																	xxx
BRNW colonial waterbirds	Seabirds																																	xxx
NOAA lighthouse	Seabirds																														>	xx		
MMS/BOEM & OR/WA seabird catalogs	Seabirds																																	
Fisher & Pearcy ocean purse seine	Fish			i i i	i i																													
NOAA estuary purse seine	Fish																																ххх	
NOAA plume (night)	Fish																														>	xx		

- Post-CREDDP, no studies captured estuary-plume continuum with spatially & temporally continuous sampling
- Most work driven by applied conservation concerns (e.g. species recovery)
- Several key data streams recently reduced or lost (XXX) due to federal budget cuts

METHODS: Estuary bird surveys

• Estuary colonies & roosting sites

East Sand Island cormorant colon

Sample photo

- High-resolution, geo-referenced aerial photography
- Land & boat-based visual counts
- Only colonies/species of management interest (not community surveys)
- Primary data sets generated by Roby et al., 1997-present

METHOD – Plume bird surveys

Land-based surveys

- Birds at sea, on the water or flying
- Land-based, ship-based, & aerial visual surveys
- Counting all species encountered, not just those of management concern
- Primary plume data sets presented generated by Zamon et al. (land, ship)
- Additional plume data sets not included here (Strong et al., Pearson & Lance very nearshore small boat surveys; Adams et al. - aerial surveys)

RESULTS: Estuary bird populations have changed – a lot

RESULTS – Columbia River Plume, < 1.5 km offshore

- Land-based surveys
- Zamon et al. unpublished data, Phillips et al. 2011
- Numerical dominants
 - Sooty shearwaters
 - Common murres
- Gulls, cormorants, pelicans in common w/estuary
- Up to 2,500 birds/km²!

RESULTS – Columbia River Plume, > 4 km offshore

- Between Cape Meares, OR and Grays Harbor, WA
- Numerical dominants
 - Common murres
 - Sooty shearwaters
- 7-37 birds per km²

TAKE HOME MESSAGE very large numbers of birds in estuary/plume

ESTUARY

- > 65K breeding residents, nonbreeding residents, non-breeding migrants
 - <u>Dominants</u>: Caspian tern, double-crested cormorant, western x glaucous-winged gull, brown pelican

PLUME

- >300K breeding residents, possibly 2-4 million non-breeding residents/migrants
 - <u>Dominants</u>: sooty shearwater, common murre

WHAT FISHES SUPPORT SO MANY FISH-EATING BIRDS?

METHODS – Fish surveys

- Boat-based net sampling
- Daytime estuary purse seine, entire water column except benthic fish
- Daytime plume surface trawl, upper 20 m
- Nighttime plume trawl, upper 20 m
- NEW PILOT WORK: estuary/ocean mobile hydroacoustics, ~3 m to the bottom (not presented here)
- Data presented today are for fish of size birds can eat (<250 mm)

RESULTS – Dominant fishes in estuary

- Weitkamp et al. unpublished data
- 2010-2012, ~27 taxa in total
- Similar rankings as 2007-2010 (Weitkamp et al. 2012)
- Dominated by anchovy, shad, surf smelt, herring

RESULTS – Dominant fishes in plume

RESULTS – dominant fish across estuary/plume continuum

- Species common to estuary & plume regions
 - Northern anchovy
 - Surf smelt
 - Pacific herring
 - Juvenile salmon

METHODS – Bird diet

- Diet samples
 - Bill loads for chicks
 - Stomach samples
 - Necropsy, lavage, regurgitation
 - Fecal samples
 - PIT tag recovery on colonies
 - Primarily for juvenile salmonids
- Prey identification
 - Visual
 - Soft tissue
 - Bones, hard tissue
 - Genetic
 - PIT tag decoding

northern anchovy

Chinook salmon

12 mm PIT tag , Caspian tern colony

RESULTS – Estuary bird diet

Double-crested cormorant

 Detailed look at bird diet & fish availability - including seasonal diet changes – to be presented by Weitkamp et al. in next talk

- Average composition, 2000-2013
- Over 45% of cormorant diet, 67% of tern diet contains anchovy, salmon, herring
- PIT tag recoveries from East Sand Island colonies verifies estuary birds consume millions of salmon each year

	Frequency of occurrence in diet samples								
	2005	2008	2009	2010					
Common murre	n = 5	n = 6	n= 17	n = 16					
Juvenile salmon	20.0%	16.7%	11.8%	0%					
Northern anchovy	20.0%	33.3%	58.8%	81.3%					
Pacific sandlance, Pacific herring, Pacific sardine, surf smelt, other	0%	16.7%	35.3%	31.3%					
Sooty shearwater	n = 2	n = 9	n = 9	n = 15					
Juvenile salmon	0	0	0	0					
Northern anchovy	100.0%	66.7%	100.0%	100.0%					
Unidentified fish/crustacean	0.0%	33.3%	0.0%	40.0%					

RESULTS – Plume bird diet

- Very few data available
- Varoujean & Matthews 1983
 - Common murre (n=77)
 - Over 75% anchovy, tomcod
 - 13% birds had juvenile salmon
- Zamon et al. unpublished proof-of-concept work
 - Anchovy most prevalent prey in shearwater & murre samples
 - Additional species in murre diet

MANAGEMENT & CONSERVATION APPLICATION

- Recovery of ESA-listed Columbia River juvenile salmon & steelhead populations
 - Estuary avian predation is significant factor
 - Effects modulated by alternative fish prey
 - Plume predation ???
- Ecosystem science/models/management
 - Provide data for models of bioenergetics, salmon survival, food webs, energy flow
 - Identify California Current "ecological hotspots"
 - Inform forage fish harvest management

MANAGEMENT & CONSERVATION APPLICATION

- Marine spatial planning data
 - Wind/wave/tidal energy development
 - Oil spill planning & response
 - Critical, sensitive, or protected habitat for birds & fish (sanctuaries, reserves, MPAs, IBAs, estuarine nursery areas)
- Monitoring ecosystem/climate change
 - Species distribution/abundance
 - Reproductive patterns
 - Ecosystem production

TAKE HOME MESSAGES – Estuary/plume

- The estuary/plume continuum supports very large numbers of fish-eating seabirds during April – September, and the numerically dominant bird & fish species change along this continuum
- Anchovy, herring, smelt, and juvenile salmon provide most of the food resources to support birds in the estuary/plume.

 These seabird-fish interactions create an "ecological hotspot" containing multiple issues of management & conservation concern.

Data gaps, future work

- Bird-fish interactions in the plume a data gap
- Studies/surveys/syntheses with river-to-ocean coverage across the entire estuary-plume continuum
- Multi-scale, mechanistic understanding of mechanisms driving forage fish dynamics in estuary/plume continuum
 - Tidal, seasonal, interannual variation in distribution/abundance
 - Dynamics critical to estuary/plume ecology, ecosystem models
 - High potential for mechanistic understanding, predictive capability due to strong physical forcing
- Defining time & space scales of management forecast/action/response needs for estuary/plume
 - When, where, what data types available in time to inform adaptive management

CONCEPTUAL FRAMEWORK – Daily changes of entire water column

Model data & images courtesy www.stcmop.org

ACKNOWLEDGMENTS

- BRNW, NOAA, USGS staff & students involved in estuary/plume research (dozens)
- Data/idea contributors: Paul Bentley, Bob Emmett, Laurie Weitkamp, Cheryl Morgan
- Primary funding sources: Bonneville Power Administration, Bureau of Ocean Energy Management, NOAA Fisheries, Oregon Wave Energy Trust, US Army Corps of Engineers, US Geological Survey