Ocean avian predation risk & early marine survival of salmon in the Columbia River Plume

J. Zamon¹, B. Burke¹, M. Hunsicker¹, D. Teel¹, & E. Phillips²

¹ Northwest Fisheries Science Center, NOAA Fisheries ²School of Aquatic and Fishery Sciences, University of Washington

- * **Question:** Is seabird predation affecting the marine survival of juvenile salmon *after* salmon exit the estuary and enter the ocean?
- Background: Motivated by management need to understand mechanisms affecting the early marine survival of endangered Columbia River salmon populations
- * **Approach:** Four-step empirical evaluation of predation impact

Evaluating predation impact

Four-step evaluation

- 1. Determine which potential predators are present
- 2. Identify most abundant predators likely to exert significant impact
- Quantify predator-prey overlap in time & space, identify areas of high risk
- 4. Measure or estimate level of prey consumption

Unique data set

- * May, June 2003-2012
- * Bird transects (lines)
- Salmon trawls, oceanographic stations (stars)
- Common murre colonies (circles)
- * 200 m contour (gray line)
- * Simultaneous, <u>local</u> covariates
 - Temperature/chl-a/salinty
 @ 3 m, distance to murre colony, distance to shore
- Genetic data on salmon
 population origins: Teel et al. 2015
 Marine & Coastal Fisheries 7(1): 274-300

Predator-prey overlap & predation risk

Modify Ward et al. 2015 (Ecological Applications)

- Assume spatial & temporal overlap represents potential risk
- Model data distributions w/covariates
- * Identify spatial-temporal overlap
- * Quantify risk with an overlap index
- * Map high-risk areas

Flow diagram – data to model output

1. Compile bird, salmon, covariate data sets; choose optimal model mesh size 2. Interpolate covariates onto model mesh w/Matern function

3. Delta-GLMM presence-absence models (p): logit($\mathbf{p}_{year}(stations)$) = $X_{year}(stations)\cdot\mathbf{b} + \varepsilon_{year}(stations)$

> 4. Delta-GLMM density-when-present models (u): log(\mathbf{u}_{year} (stations)) = Z_{year} (stations)·**c** + δ_{year} (stations)

5. Map predicted salmon CPUE & bird densities by combining both models for each year given covariate data matrices

6. Calculate & map overlap indices for each salmon ESU/DPS of interest

Chinook salmon populations of interest

Six (6) threatened/endangered, two (2) unlisted (additional groups in Teel et al. 2015, Marine & Coastal Fisheries)

Interior yearlings

- Snake River spring (T)
- Mid/upper Columbia spring (E)
- * Snake fall (T)
- Upper Columbia summer/fall

Lower Columbia yearlings

- West Cascade spring (T)
- Willamette spring (T)

Interior subyearlings

- * Snake River fall (T)
- * Upper Columbia summer/fall

	-				
Recults - Sten 1	_	MAY		JUNE	
nesults – Step i			% of		% of
	Species	Count	grand	Count	grand
			total		total
1. Potential predators	Sooty shearwater	8560	41.4%	15972	50.4%
	Common murre	7961	38.5%	10322	32.6%
	Rhinoceros auklet	453	2.2%	450	1.4%
	Western X glaucous-				
	winged hybrid gull	448	2.2%	679	2.1%
	Unidentified gull	417	2.0%	207	0.7%
* 40-45 bird species	Pink-footed shearwater	327	1.6%	1354	4.3%
	Unidentified phalarope	301	1.5%	7	0.0%
★ ≥80% of all birds were sooty	Immature gull	298	1.4%	221	0.7%
shearwaters, common	Sabine's gull	288	1.4%	0	0.0%
Shear Water S, common	Pacific loon	270	1.3%	24	0.1%
murres	Red-necked phalarope	223	1.1%	1	0.0%
	Cassin's auklet	192	0.9%	488	1.5%
	Western gull	127	0.6%	130	0.4%
	Black-footed albatross	72	0.3%	489	1.5%
	Northern fulmar	16	0.1%	408	1.3%
	Caspian tern	4	<0.1%	259	0.8%
	Other species	711	3.4%	684	2.2%
	GRAND TOTALS	20668	100.0%	31695	100.0%

Results – Step 2

2. Most abundant predators

Highest mean densities by transect

- * Common murres
 - * Columbia River
 - * Cape Meares

Common murre

Results – Step 2

2. Most abundant predators

Highest mean densities by transect

- * Sooty shearwaters
 - * Columbia River
 - * Willapa Bay
 - * Grays Harbor

Results – Step 3 Snake Upper Columbia Mid/upper Columbia Snake spring yearlings summer/fall yearlings spring yearlings fall yearlings Columbia Columbia Columbia Columbia ***** River **River *** River River West Cascade Willamette 3. Quantify overlap spring yearlings spring yearlings 10 Median overlap index common murre, May 5 0 Columbia Columbia River River

Results – Step 3

Ocean avian predation three take home messages

- * Predation risk differs by salmon ESU/DPS & predator type
- * There is consistently high overlap in the region between Cape Meares and Grays Harbor
 - Plume area most directly influenced by Columbia River discharge
- * When we look for evidence of ocean avian predation (Step 4), the logical place to look is between Cape Meares and Grays Harbor in May

Acknowledgments & thanks

- Bonneville Power Administration
- NOAA Northwest Fisheries
 Science Center
- Survey crews NOAA, OSU-CIMRS, especially Troy Guy, Cheryl Morgan & all our dauntless dawn data recorders
- NOAA shore support especially Susan Hinton, Bob Emmett, Paul Bentley, Pt. Adams Shop
- Survey vessels Frosti, Miss Sue, Pacific Fury, Chelissa, Piky, Predator, McArthur II

 * ALL heavy lifting for models: Burke & Hunsicker modifying & subduing the "unruly" R-code form Ward et al. 2015

