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Background

13 Columbia River salmon species are
Threatened/Endangered

Habitat loss and alterations to
food webs identified as potential
factors in population declines

Loss of emergent wetland habitat,

greening of the river
o Shift in organic matter loadings
o Effects on juvenile salmon food webs not well understood
o Conditions of existing habitats need to be monitored



Ecosystem Monitoring
Program (EMP)

Physical, chemical, and biological conditions ..
of shallow, tidal wetland habitats used by '
out-migrating juvenile salmon

Previous focus: vegetation, salmon utilization
of sites, prey availability, & fish condition

Findings:
o Juvenile Chinook diet preference, regardless of invert
diversity at sites:
« Dipteran larvae, especially chironomids
« Amphipods (estuarine sites)

o Emergent vegetation provides important habitat for
invertebrate prey




Habitat characterization

Water-quality monitors:

Temperature

PH

Dissolved oxygen
Specific conductance
Turbidity (2008—09)
15/30 minute logging
April = July (2011 —2014)
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In-stream primary
production

Food web utilization




Sites

Ilwaco Whites Campbell Slough, Franz Lake
(reach A) Island (C) Ridgefield (F) Slough (H)
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Habitat conditions:
water quality

Sites had best water-quality conditions in April-May

All sites experience unsuitable conditions by ~July

Most years
o High temperature, low dissolved oxygen

Sites differed in frequency and duration of
unsuitable condifions

Primary drivers:

o Columbia River flows
o Site position: fidal influence and distance from mainstem - flushing rate



Inter-site variability
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Inter-annual variability
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Habitat Conditions:
Primary Productivity

« Examine patterns in
abundance/composition of [
primary & secondary »
producers in shallow wetland
habitats during juvenile
salmon migration

* Primary and secondary
produc’non (USGS, OHSU):

phytoplankton abundance, productivity
rates, species composition

o periphyton abundance, productivity
rates

o zooplankton abundance, species
composition




Phytoplankton

Phytoplankton abundance decreases downstream

Repeatable spring bloom with minor bloomes,
dominated by similar species (Asterionella formosa,
Aulacoseira granulata, Skeletonema potamos,
etc.);

Phytoplankton biomass/abundance/species
composition strongly influenced by river flow



Periphyton
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Food Web Analysis

« Goal: determine the important food web
components supporfing juvenile salmon

« Study question: What are the dominant organic
matter sources supporting juvenile Chinook salmon
food webs in the LCRE?

o Changes in dominant sources by time, site?




Conceptual model
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Approach Stable Isotopes

Natural abundance stable isotopes of C, N as food
web tracers

« & values: ratio of heavy to light isotope, vs. @
standard

« § values of consumers' tissues reflect food sources

« Metabolic loss of light isotopes - consumers in
higher trophic levels become enriched in heavy
iIsotope (“trophic enrichment”)

* Trophic enrichment factors (Post, 2002)

o 0.4%1.3 %o (6°C )
o 3.4%1.3 %o (6'°N )



Sampling Design

4 wetland sites in LCRE, April-July

Juvenile Chinook salmon muscle

Invertebrates
Hatchery food

Phytoplankton, periphyton
Marsh vegetation N
Submerged aguatic vegetation =55




SIAR Mixing Model

SIAR food web mixing model (Parnell & others, 2010)

Estimates proportions of food sources in a
consumer’s diet

o Allows for many food sources
o Incorporates variability in Sl signatures of food sources
o Model output: density of estimated dietary proportions

Proporton denstion

Model runs: e |

\
o Chinook salmon as consumers ‘
o Invertebrates as consumers ‘
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Preliminary Results:
salmon diets (2010-12)

Hatchery food largest dietary source
for marked juvenile Chinook

Chironomids conftribute increasingly "fi B
tfo unmarked Chinook dietfs with later | SSESES
months of fish catch '

Hatchery/maternal influence on §| of

Chinook muscle

o Muscle: long-term integrator
o Mucus, liver: more recent diet sources

o Muscle, liver, mucus from all salmon 2013-14 e
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Preliminary Results:
invertebrate diets (2010-12)

« Chironomids: Phytoplankton largest food source
overall during season, esp. early season (May)

 Amphipods: Vegetation; phytoplankton not likely
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Summary

Phytoplankton and vegetation both contribute to

selected prey organisms’ diets

o Different locations, timing

o Preliminary findings consistent with similar study in Columbia R. estuary and
primary production patterns

Importance of spring freshet magnitude & duration

o affects wetland vegetation cover and phytoplankton
productivity/species composition = food resources

o water-quality conditions

Leading to better understanding of how shallow
emergent wetlands habitats support salmon,
invertebrate prey, and primary producers




Next steps

Incorporate 2013-14 data

o Fill spatial, temporal data gaps
o Focus on invertebrate sampling

Put info context of other EMP work

o Invertebrate prey production from different vegetation types
o Wetland macrodetritus export calculations

Understanding resources required by juvenile
salmon and their prey & the conditions that limit or
Improve those resources will help restoration
planners maximize benefits for juvenile salmon and
the resources they rely on
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