Development of a 1-Dimensional Unsteady State Model of the Lower Columbia River and Application in Determining a 50% Annual Exceedance Stage Profile

RTLAND DISTRICT

Serving the N

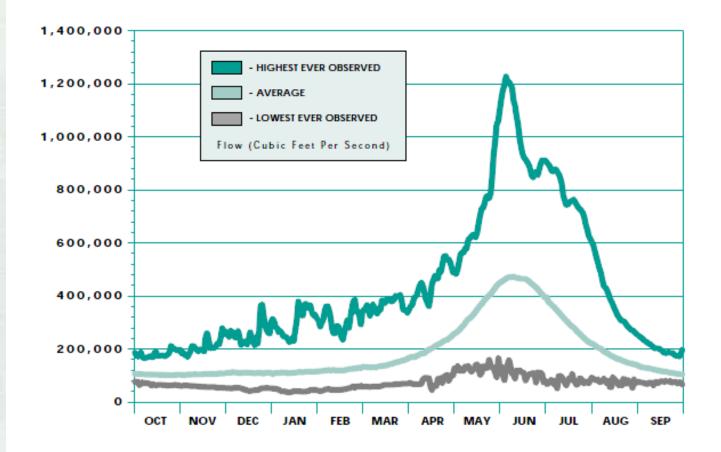
Chris Nygaard

Hydraulic Engineer Portland District May 29, 2014

US Army Corps of Engineers BUILDING STRONG_®

Topics

- Purpose of Model
- 1-D HEC-RAS Model Development
 - ► Terrain
 - Model Geometry
 - Inflow Hydrograph
 - Calibration
- 50% Annual Exceedance Stage Profile Development


Purpose

- Support the US Entity in the 2014-2024 Columbia River Treaty Review
- Provide hydraulic metrics associated with flood consequences
 - Inundated Areas
 - Peak Stages
 - Stage Duration

Development was Focused on Damaging Floods

Purpose

Design Range of Flows

PORTLAND DISTRICT BUILDING STRONG®

Combined 1 meter Topographic and Bathymetric DTM

Topographic:

- 1 meter LiDAR collected 12/2009 2/2010
- 0.2% AEP inundated area coverage

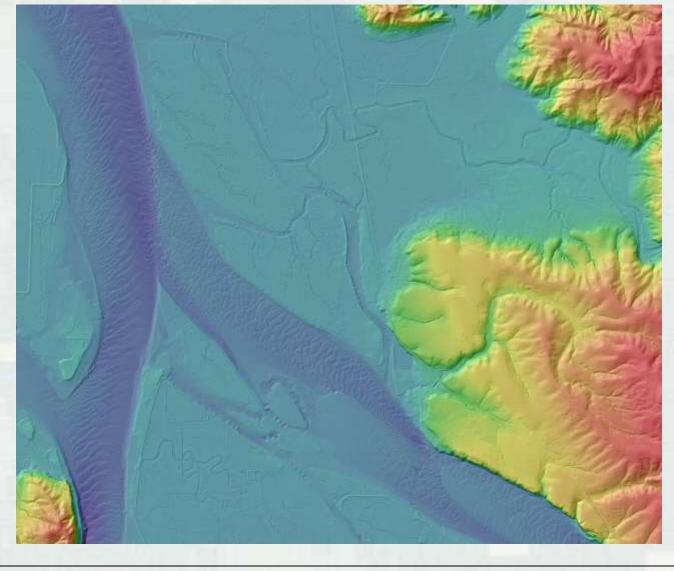
Bathymetric:

- Data dates range from 1851-2010
- Quality Varies

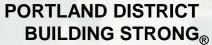
Datum:

Albers Equal Area Conic, USGS version.

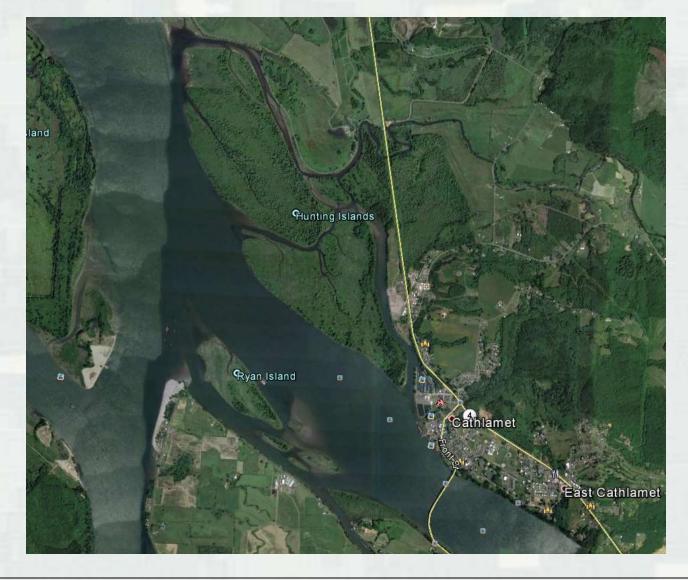
Modified to US Feet


•NAVD88 (Geoid 2009), feet

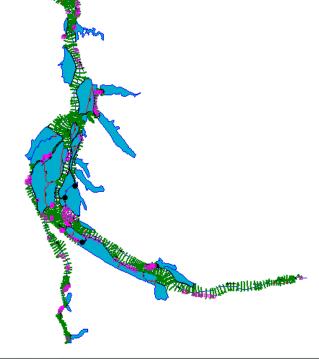
Development Team:


- USACE, Portland District
- David Smith and Associates, Lead
- David Evans and Associates, Sub
- CC Patterson and Associates, Sub

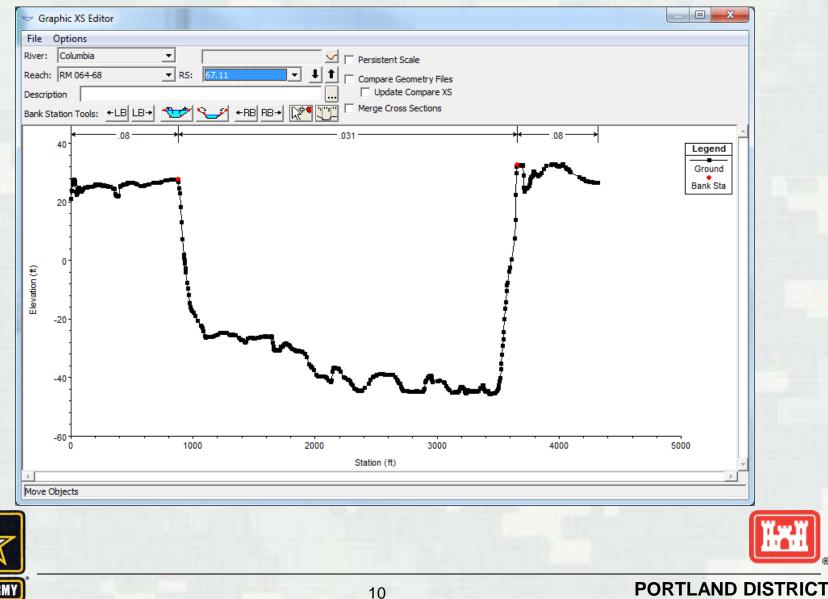
•Data from multiple sources: USACE, NOAA, LCREP, US BOR, and more...



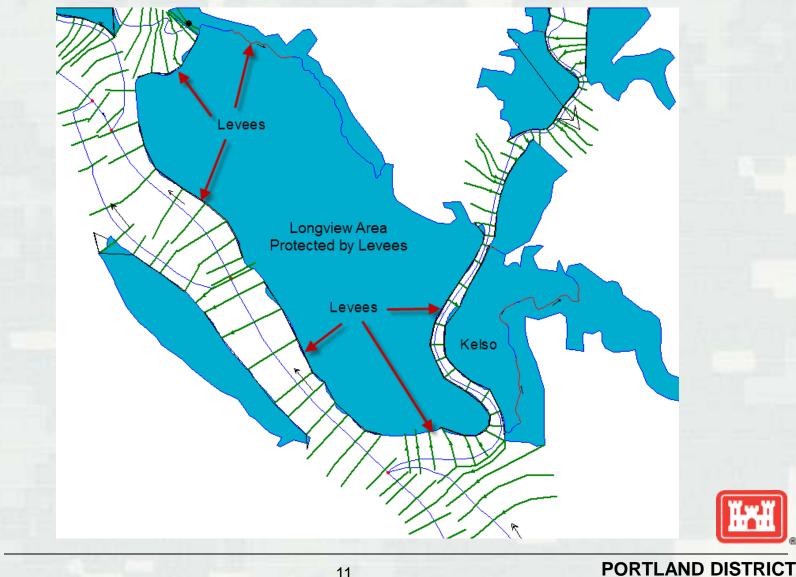
H.A.H

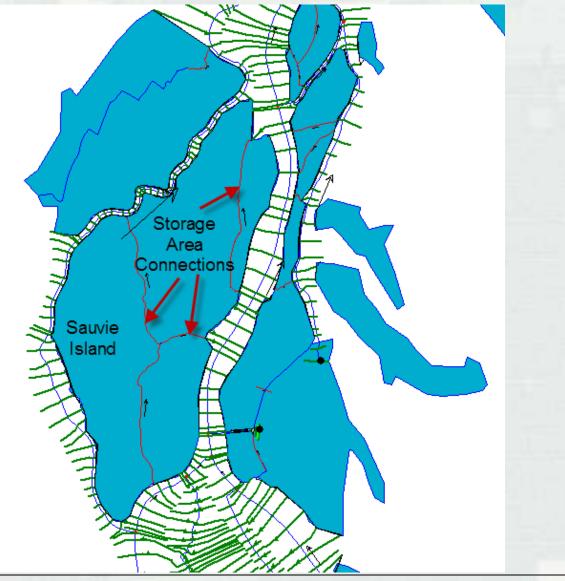


Combined 1 meter Topographic and Bathymetric DTM


1-D Unsteady State HEC-RAS

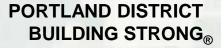
Geometric Data Generated by HEC-GeoRAS

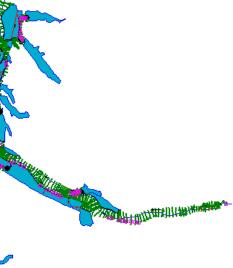




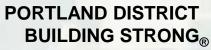
BUILDING STRONG®

BUILDING STRONG_®

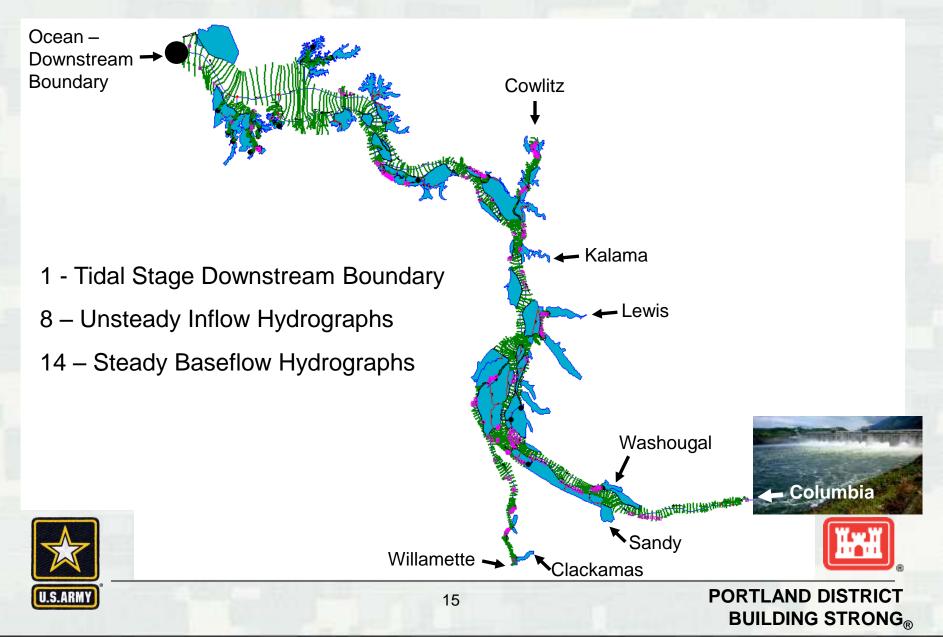

U.S.ARN

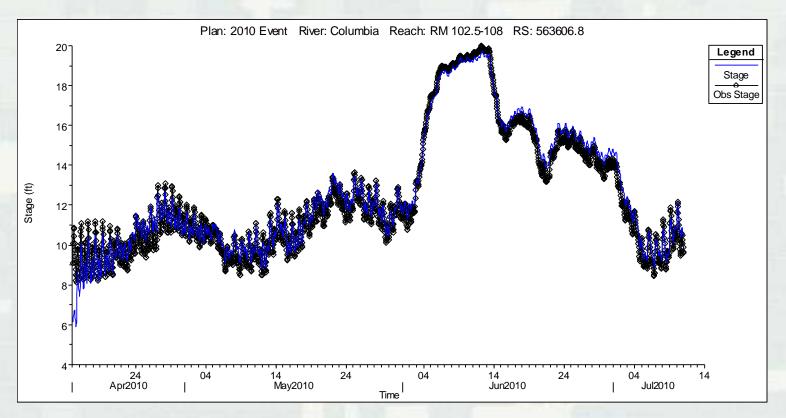


Storage Area Connection	n Breach Data		
SA Connection 424		▼ ↓ ↑ Delete this Breach Delete all Breaches ↓	
🔽 Breach This Struct	ure		
Breach Method: User E	Entered Data 💌	Breach Plot Breach Progression Simplified Physical Breach Repair (optional) Pa	ramet
Center Station:	1493	Lower Columbia CRT Plan: R1977	- 7
Final Bottom Width:	423.4		ī
Final Bottom Elevation:	8.5	30 Spillway	
Left Side Slope:	0.5	25	<u>บ</u>
Right Side Slope:	0.5		
Breach Weir Coef:	2		
Breach Formation Time (hrs): 4.68		€ 20 uotite endition 15	
Failure Mode: Pi	ping 💌		
Piping Coefficient:	0.5	10	
Initial Piping Elev:	15	5	
Trigger Failure at:	S Elev +Durat 💌		
Threshold WS	27.05	0 1000 2000 3000 4000 5000 6000	
Duration Above Thresho	ld 120	Station (ft)	-
Immediate Initiation WS	27.4		•
		OK Can	cel



- 1449 Cross Sections
 - Average spacing ~2000 ft
- 162 Storage Areas
- 208 Lateral Structures
 - 61 with Breach Data
- 77 Storage Area Connections
 - 12 with Breach Data





Inflow Hydrograph Development

Flood Calibration

Computed and Observed Stages on Columbia River at Vancouver for 2010 Event

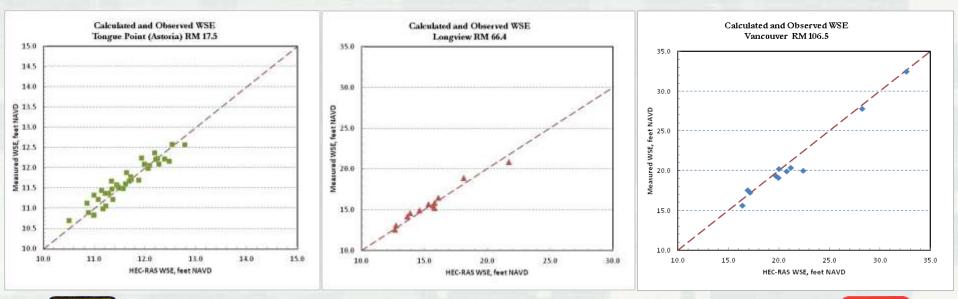
Why develop the profile?

Survival Benefits Unit water surface profile was defined in Section 2., ERTG Document 2011-01; "Use the 2-year flood elevation or EHHW (mean highest monthly tide), whichever is higher".

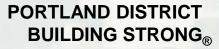
PORTLAND DISTRICT BUILDING STRONG®

Approach:

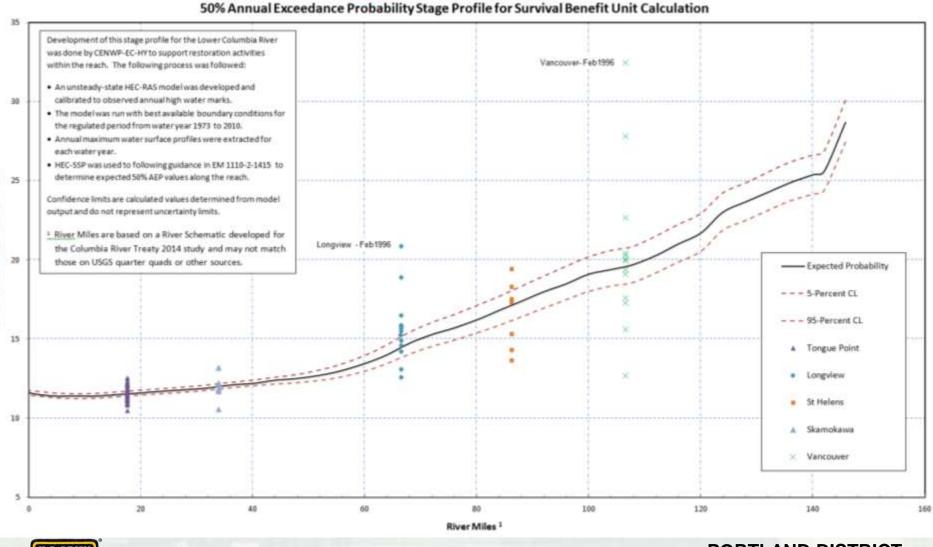
- Develop a continuous observed inflow data set that represents the current conditions (1973-2010).
- Calibrate model to annual peak stages
- Calculate annual peak stages for period of record
- Calculate 50% AEP stage



Annual Peak Calibration


Tongue Point Tidally Dominated

Longview Tide-Flow Mixed Peaks


Vancouver Flow Dominated

DRAFT Lower Columbia River

Water Surface Elevation, feet NAVD

PORTLAND DISTRICT BUILDING STRONG®

20

Water Surface Elevation, feet NAVD						
	Expected	5-Percent	95-Percent			
RM ¹	Probability	CL	CL			
145.87	28.7	30.1	27.4			
142.04	25.6	26.9	24.4			
140.15	25.4	26.6	24.2			
136.05	24.9	26.2	23.7			
132.13	24.3	25.6	23.2			
128.19	23.7	24.9	22.5			
123.99	23.0	24.2	21.9			
120.07	21.7	22.9	20.6			
115.93	21.0	22.2	19.9			
112.10	20.3	21.5	19.2			
107.86	19.7	20.8	18.6			
104.06	19.4	20.6	18.4			
100.00	19.1	20.2	18.0			
96.06	18.5	19.6	17.5			
92.06	18.0	19.0	17.0			
88.04	17.4	18.3	16.4			
83.92	16.8	17.7	15.9			
80.65	16.3	17.2	15.5			
75.98	15.7	16.5	14.9			
72.12	15.3	16.1	14.6			
68.15	14.8	15.4	14.1			
63.99	14.0	14.6	13.5			
60.41	13.5	14.0	13.0			
55.84	13.0	13.4	12.6			
51.85	12.7	13.0	12.4			
47.70	12.5	12.7	12.2			
44.06	12.4	12.6	12.2			
40.24	12.2	12.4	12.1			
36.35	12.1	12.3	11.9			
31.89	11.9	12.1	11.8			
28.07	11.8	12.0	11.7			
23.76	11.7	11.8	11.6			
20.24	11.6	11.8	11.5			
16.35	11.5	11.7	11.4			
12.18	11.4	11.6	11.3			
8.47	11.4	11.5	11.2			
4.65	11.4	11.6	11.3			
1.70	11.5	11.7	11.4			
0.15	11.6	11.7	11.5			

PORTLAND DISTRICT BUILDING STRONG_®

Acknowledgements

Gary W. Brunner, P.E., D.WRE, M.ASCE Senior Technical Hydraulic Engineer Hydrologic Engineering Center. USACE

James D. Crain Hydrologist and Hydraulic Engineer Portland District, USACE

