

Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River

H. Diefenderfer, G. Johnson, R. Thom, A. Borde, C. Woodley, L. Weitkamp, K. Buenau, and R. Kropp

Columbia River Estuary Workshop May 30, 2014 Astoria, Oregon

Purpose and Contents

Purpose: Explain results of the evidence-based evaluation (EBE) of the Columbia Estuary Ecosystem Restoration Program (CEERP)

Contents

EBE Basics

CEERP Results

Summary

CEERP is a joint effort of BPA and the Corps and their partners to implement ecosystem restoration in the lower Columbia River and estuary as mandated in the FCRPS BiOp.

Management Question

Proudly Operated by Battelle Since 1965

Is CEERP having positive, systemwide cumulative effects to the benefit of ESAlisted juvenile salmon and steelhead?

Map courtesy of LCEP

Cumulative effects are defined as changes to salmon and the ecosystem resulting from collective actions of CEERP partners.

EBE's Role in the CEERP Adaptive Management Process

Proudly Operated by Baffelle Since 1965

General Model of the Cumulative Effects of Ecosystem Restoration

Proudly Operated by Baffelle Since 1965

Actions can have direct effects on species as well as effects mediated by ecosystem processes

EBE Approach

Proudly Operated by Battelle Since 1965

6

Proudly Operated by Baffelle Since 1965

Landscape Features Hydrology/ Water Quality Vegetation

NOAA Technical Memorandum NMFS-NWFSC-97

Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

February 2009

3 ENERGY

The Oncor Geodatabase for the Columbia Estuary Ecosystem Restoration Program: Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates

December 2013

U.S. SEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Manue Fatheres Socioe

Lines of Evidence Used to Evaluate the Hypotheses

Proudly Operated by Battelle Since 1965

Line of Evidence	Description	Cumulative Effects Category
	Evidence from the Lower Columbia River and Estuary (LCRE) Floodplain
Spatial and temporal synergies ("synergies")	Interaction among multiple effects to produce an outcome that is greater or less than the sum of the individual effects	Synergistic, space crowding, indirect, time lags, cross-boundary, nonlinear, compounding
Cumulative net ecosystem improvement ("CNEI")	Change in ecological function from the areas restored across multiple sites with various probabilities of success	Landscape, compounding
Site-scale ecological relationships ("relationships")	Cause/effect associations between one or more independent variables and a response (dependent) variable	Indirect, time lags, compounding
Estuary-wide meta-analysis ("meta- analysis")	Use of statistical (quantitative) and non-statistical (qualitative) methods to summarize multiple site-scale monitoring results to make inferences at an estuary-wide scale	Landscape, time lags
Offsite benefits to juvenile salmon ("offsite")	Beneficial effects on juvenile salmon from ecosystem restoration that are realized indirectly at locations away from the restoration site, e.g., in the main-stem river	Cross-boundary, indirect, compounding
Evide	ence from the LCRE Landscape and Analogous Ecosystems C	Dutside the LCRE
Landscape condition evaluation ("landscape")	Description of trends in indicators of aquatic ecosystem condition at the landscape scale, specifically, the watershed context within which wetlands on the LCRE floodplain are being restored	Landscape
Evidence-based scoring of global literature ("global literature")	Systematic global literature search, filtering, review, and scoring based on formal criteria applied to selected response variables	Not applicable to cumulative effects

Data Collection Locations

Proudly Operated by Baffelle Since 1965

Meta-Analysis of Action Effectiveness Data

Proudly Operated by Baffelle Since 1965

Restoration	Restoration	Water	Sediment	Water	Vegetation	Salmon
Project	Action	Level	Accretion	Temperature	Similarity	Presence
Crims Island	Channel	Haskell and	Thom et al.		Thom et al.	Haskell and
	Excavation,	Tiffan 2011	2012 ^(a)		2012	Tiffan 2011
	Grading					
Johnson	Dike Breach					Eaton
Farm						2010 ^(b)
Kandoll Farm	Dike Breach,	Roegner et	Thom et al.	Roegner et al.	Thom et al.	Roegner et
	Culvert	al. 2010	2012 ^(a)	2010, Thom et al.	2012 ^(e)	al. 2010 ^(f)
	Installation			2012		
South Slough	Dike Breach,	CREST		CREST 2012		CREST 2012
	Culvert	2012				
	Removal					
Julia Butler	Tide-Gate	Johnson J		Johnson J et al.		Johnson J et
Hansen NWR	Replacement	et al. 2009,		2009, 2011		al. 2009,
		2011 ^(c)				2011 ^(d)
Tenasillahe	Tide-Gate	Johnson J		Johnson J et al.		Johnson J et
Island	Replacement	et al. 2008		2008		al. 2008
Vera Slough	Tide-Gate	Thom et al.	Thom et al.	Thom et al. 2012	Thom et al.	Thom et al.
	Replacement	2012 ^(c)	2012, In		2012	2012 ^(g)
			Prepb ^(a)			

Offsite Benefits

Proudly Operated by Battelle Since 1965

Summary of Analyses of Fish & Habitat Hypotheses and Indicators

Proudly Operated by Baffelle Since 1965

Fish Resp			sh Response				Habitat Response					
Analyses	Presence	Residence	Survival	Prey	Diet	Fullness	Growth	Water Level	Sediment Accretion	Vegetation	Water Temperature	Export
Particulate organic matter flux model												
Hydrodynamic model of dike breaches												
Historically breached sites												
Detections of known Interior Columbia ESUs/DPSs												
Cumulative net ecosystem improvement model												
Meta-analysis of LCRE sites: tide-gate replacements												
Meta-analysis of LCRE sites: all other reconnections												
Offsite benefits to juvenile salmon condition												
Evidence-based scoring of LCRE post-restoration reports												
Analogous cases in the global literature												
Key: green = support; red = lack of support; yellow under the sampling design, for this evidence-based e	= inco evaluati	nclusiv on.	e; gray	= insuf	ficient o	or no da	ta; whi	te = not	t applica	ble, or	not coll	ected

12

Causal Criteria Synthesis

Proudly Operated by Battelle Since 1965

Causal Criterion (CC)	Short Definition	Finding
Strength of association	The magnitude of the effect	Supported
Consistency of association	The repeated observation of the association in varied times and circumstances by multiple observers	Supported
Biological plausibility	Knowledge of the mechanism	Supported
Biological gradient	The level of response is associated with a gradient in the hypothesized cause	Supported
Experimentation	Manipulation of the hypothesized cause	Not evaluated
Temporality	The effect is shown to follow the hypothesized cause	Supported
Specificity of association	Limitation of the association to particular causes and effects	Supported
Analogy	Comparison to similar systems	Supported
Coherence	Lack of serious conflict between the cause-and-effect interpretation and known facts about the case under consideration	Supported
Complete exposure pathway	In a floodplain river system context, this is hydrologic connectivity	Supported
Predictive performance	Ability to accurately and precisely predict restoration outcomes	Not evaluated

Conclusions (from EBE report, p. 6.8)

- Based on the evidence, we concluded that the primary hypothesis was supported, i.e., that the habitat restoration activities in the LCRE are likely having a cumulative beneficial effect on juvenile salmon, including interior basin salmon.
- Salmon in restored wetland areas are directly affected by the habitat structures and processes.
- Salmon actively transiting main-stem river habitats are indirectly affected through the food web by allochthonous materials from floodplain wetlands.
- The beneficial effect of restoring tidal wetlands is expected to increase over time as existing restoration projects mature and new ones are implemented."

NOTE: We are reasonably certain about the positive direction of the relationship between restoration and benefits to juvenile salmon, but we are uncertain about the magnitude.

Contact Information and References

Contact Information

HLD, (360) 681-3619, heida.diefenderfer@pnnl.gov

Reference

- Diefenderfer et al. 2013. An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River. PNNL-23037. Final report prepared for the U.S. Army Corps of Engineers Portland District, Portland, Oregon, by Pacific Northwest National Laboratory and NOAA Fisheries. Richland, Washington.
- Upcoming Session on EBE at the Conference on Ecological and Ecosystem Restoration, New Orleans, July 2014

Proudly Operated by Baffelle Since 1965

Thank You

ANNEX

Proudly Operated by Baffelle Since 1965

The Science Question

Proudly Operated by Ballelle Since 1965

Are large-scale changes in quality and landscape pattern of ecosystems contributing to the recovery of species and ecosystem services?

Cumulative Net Ecosystem Improvement (CNEI)

To calculate cumulative net ecosystem improvement as an additive change in function, we used the general equation (Diefenderfer et al. 2011) n

$$CNEI = \sum_{i=1}^{n} \Delta F_i A_i P_i$$

- where n = number of restoration projects
 - ΔF = change in ecological function
 - A = project size (area)
 - P = probability of success of the restoration action.

<u>Maximum potential productivity increase from areas</u> <u>restored:</u> 8,529 metric tons annual herbaceous plant biomass flux; and 7 billion dipterans/48 h based on fallout trap data collected in the months of April–June.

Need for a New Approach to Evaluate Ecosystem Restoration

- Need to evaluate cumulative effects, because of the complexity of the ecosystems, restoration actions, and responses.
- Existing evidence-based approaches were rigidly embedded in published literature; time lags make this unacceptable for active large-scale ecosystem restoration programs.
- Need for program-level evaluations to support adaptive management, decision-making and accountability to stakeholders and taxpayers.

EBE Elements – Large Scale Restoration

- Derives tiered hypotheses from the overall science question and an ecosystem conceptual model
- Employs standardized monitoring methods
- Involves causal criteria synthesis of multiple lines of evidence obtained from analyses using field research, monitoring, modeling, meta-analysis, etc.
- Evaluates cumulative effects of many site-specific actions to provide managers with program-level information for reporting or decision making

An ecosystem conceptual model is the basis for selecting response indicators and developing hypotheses regarding the effects of restoration actions on the ecosystem and species of interest

Tiered Hypotheses

Primary Hypothesis: Habitat restoration activities have a cumulative beneficial effect on the species of interest.

Here, 12 indicators are grouped under secondary Habitat and Fish Response Hypotheses

Drawing hypotheses from the conceptual model:

- Changes in the hydrogeologic environment affect water quality that affects physiological response;
- These changes also affect primary production, which affects prey and ultimately behavior
 Population metrics

EBE Approach – What's New?

Proudly Operated by Battelle Since 1965

- Accounts for cumulative effects categories identified by the President's Council on Environmental Quality (1997).
- Takes advantage of critical-thinking tools.
- Develops multiple program-specific lines of evidence and analyses.
- Includes, as one line of evidence, the comprehensive review of the literature emphasized in prior evidence-based approaches.
- Applies causal criteria to examine associations between ecosystem restoration actions and response variables.
- Systematically analyzes multiple monitored indicators having various units, scales of time and area, and levels of quantification.
- Synthesizes and evaluates restoration program effects.

Hypothetical Restoration Causeand-Effect Associations

- a) mean response per project vs. number of restoration projects in a cluster – under the null (Ho: no relationship) and alternative (Ha: cumulative effects) hypotheses;
- b) the magnitude of environmental response vs. size of the restoration area under the null (Ho: proportionality) and alternative (Ha: cumulative effects) hypotheses;
- c) temporal patterns of site response vs. one or more interventions at nearby restoration sites;
- d) ecosystem response vs. area of viable habitats.

Area of viable habitats

Results – Mean response per project vs. number of restoration projects in a cluster

Proudly Operated by Battelle Since 1965

From Diefenderfer et al. (2012)

Demonstration of EBE Application

Proudly Operated by Battelle Since 1965

Columbia Estuary Ecosystem Restoration Program (CEERP)

- Implemented by USACE Portland District and Bonneville Power Administration with partner organizations
- Goal: Understand, restore, and conserve LCRE ecosystems, especially as they benefit juvenile salmon
- Primary strategy: restore hydrologic connections to improve access and productive capacity (dike breaches)

Acknowledgments

- This research was sponsored by the U.S. Army Corps of Engineers, Portland District. The USACE is an Action Agency under the National Marine Fisheries Service (NMFS) Biological Opinion on Effects of Federal Columbia River Hydrosystem Operations on Salmon.
- Special thanks to Blaine Ebberts and Cynthia Studebaker, USACE

Methods of Hydrological Reconnection of Sites Across the River Floodplain

- A peer-reviewed approach for ecological restorationmelds earlier methods in evidence-based assessment, cumulative effects, and critical thinking.
- Unlike evidence-based approaches evaluating literature, the EBE is implemented periodically during the long-term, dynamic restoration process; it can evolve as priorities do.
- Flexible lines of evidence, including meta-analysis, are developed for the ecosystem and objectives at hand.
- Considers cumulative effects complex in space and time (scales), e.g., linear, non-linear, synergistic and pulsed.
- Separates critical thinking, e.g. synthesis from evaluation.
- Uses both deductive and inductive reasoning in a redundant system of lines of evidence and causal criteria.

Causal Criteria Synthesis of Lines of Evidence

Proudly Operated by Baffelle Since 1965

Causal Criterion (CC)	Short Definition
Strength of association	The magnitude of the effect
Consistency of association	The repeated observation of the association in varied times and
	circumstances by multiple observers
Biological plausibility	Knowledge of the mechanism (not a necessary condition of
	causation because knowledge depends on state of the science [Hill
	1965])
Biological gradient	The level of response is associated with a gradient in the
	hypothesized cause
Experimentation	Manipulation of the hypothesized cause
Temporality	The effect is shown to follow the hypothesized cause
Specificity of association	Limitation of the association to particular causes and effects
Analogy	Comparison to similar systems
Coherence	Lack of serious conflict between the cause-and-effect interpretation
	and known facts about the case under consideration
Complete exposure pathway	In a floodplain river system context, this is hydrologic connectivity
Predictive performance	Ability to accurately and precisely predict restoration outcomes

Analyses Associated with Lines of Evidence

Line of	
Evidence	General Methods (Analyses)
Synergies	Analysis of field data from historically reconnected sites, hydrodynamic modeling of inundation patterns and of particulate organic matter transport; detections of interior Columbia salmon in the LCRE
CNEI model	Additive modeling of change in function, restored area, and probability of success
Ecological relationships	Summarization of concurrent advances in the state of the restoration science in LCRE; use of new information to improve the LCRE ecosystem conceptual model
Meta- analysis	Compilation and systematic qualitative assessment of results of action-effectiveness studies in the LCRE
Offsite benefits	Comparative analysis of salmon stomachs; particulate organic matter export modeling; CNEI of prey production
Landscape condition	Remote-sensing data analysis to determine land-cover change trajectories of forest cover and urbanization in the contributing watersheds to the LCRE ³²

Categories of Cumulative Effects

Frequent and repetitive effects on an environmental system (time crowding) Delayed effects (time lags) High spatial density of effects on an environmental system (space crowding) Effects occur away from the source (cross**boundary**) Change in landscape pattern (e.g., fragmentation or the reverse) Effects arising from multiple sources or pathways (compounding effects) Secondary effects (indirect effects) (Council on Environmental Quality 1997)

EBE - Foundations in Prior Research

- Uses "causal criteria": aspects of an association that should be studied before claiming causation
 - none can prove the case alone, and none is indispensable according to Hill (1965)
- Originated in the medical sciences in the U.S. and England
 - Surgeon General's Advisory Committee on Smoking and Health 1964; Hill 1965, Proc. of the Royal Acad. of Sci.
- Further developed later in epidemiology and ecotoxicology
 - Sackett et al. 1996, British Medical Journal; Suter et al. 2002, *Environmental Toxicology and Chemistry*
- Recent concurrent applications in ecology
 - Greet et al. 2011, Freshwater Biology; Norris et al. 2012, Freshwater Science

Proudly Operated by Baffelle Since 1965

Program Assessment & Accountability

Proudly Operated by Battelle Since 1965

EBE results supported positive conclusions regarding CEERP that were reached in the Supplemental **Biological Opinion on** Federal Hydrosystem Operations by NMFS, January, 2014

http://www.westcoast.fisheries.noaa.gov/fish_passage/fcrps_opinion/

Discussion to be continued at a session at the Conference on Ecological and Ecosystem Restoration in New Orleans, July 2014