Improving Wetland Capacity through Integration of Science and Restoration in the Lower Columbia River and Estuary

Amy B. Borde¹, Heida L. Diefenderfer¹, Valerie I. Cullinan¹, Ronald M. Thom¹, Shon A. Zimmerman¹, Jina Sagar², Catherine Corbett², Matthew Schwartz², and Alex Uber³

Pacific Northwest National Laboratory
Lower Columbia Estuary Partnership
Washington Department of Fish and Wildlife

Columbia River Estuary Workshop – May 30, 2014

Definition

Opportunity

Capacity – "habitat attributes that promote juvenile salmon production, through conditions that promote foraging, growth, and growth efficiency, and/or decreased mortality."

Realized Function

From: Simenstad, CA and Cordell, JR. 2000. Ecological assessment criteria for restoring anadromous salmonid habitat in Pacific Northwest estuaries. *Ecological Engineering*, *15*(3), 283-302.

Presentation Overview

- Study overview
- Drivers of marsh vegetation composition and distribution
- Applications of findings
- Food web study
- Conclusions

Study Sites

Metrics

- Vegetation percent cover surveys
- Vegetation community mapping
- Elevation collected with Real Time Kinematic (RTK) GPS, with auto level for areas of high tree cover
- Referenced to NAVD88
- Water level sensors were surveyed to evaluate hydrology relative to wetland morphology

Vegetation

- 44 marsh sites
- ~3500 quadrats sampled
- Reed canary grass occurred in 52% of the quadrats

- 172 taxa observed
- 7 taxa made up 68% of the cumulative cover

Common Name	Species Code	Percent Cover	Cumulative Cover
Reed canary-grass	PHAR	28%	28%
Common spikerush	ELPA	21%	49%
Wapato	SALA	10%	59%
Lyngby sedge	CALY	3%	62%
Canada waterweed	ELCA	2%	64%
False loosestrife	LUPA	2%	66%
Slough sedge	CAOB	2%	68%

Pacific Northwest NATIONAL LABORATORY

Drivers: Tidal vs. Riverine Zones

Jay, DA, AB Borde, and HL Diefenderfer. *In Review.* Tidal-Fluvial and Estuarine Processes in the Lower Columbia River II: Water Level Models, Floodplain Wetland Inundation, and Reach Classification. *Estuaries and Coasts.*

Drivers: Seasonal and Interannual Variability

Drivers: Seasonal and Interannual Variability

Reed Canary Grass

- Invasive, non-native
- Dominant Species in LCR
- Accounts for 28% of cover

Sandy Island – Rkm 121

Very little reed canary grass

Pacific Northwest

Reed Island – Rkm 202

Very little reed canary grass

1.5 m, CRD

1.0 m, CRD

Application: Inform Restoration

- Plant species elevation ranges by Zone
- Inundation ranges by Zone
- Elevations and dimensions of channels

Application: Inform Restoration Full Hydrologic Connectivity

Application: Inform Restoration Full Hydrologic Connectivity

				Target
Kandoll	Steamboat	Dibblee	North Unit	Elevation
NA	rkm 55	rkm 104	rkm 144	
m, NAVD88	m, CRD	m, CRD	m, CRD	ft, NAVD88
Conversion:	-0.30	-0.86	-1.29	
1.2	0.9	0.4	-0.1	4
1.4	1.1	0.5	0.1	4.5
1.5	1.2	0.7	0.2	5
1.7	1.4	0.8	0.4	5.5
1.8	1.5	1.0	0.5	6
2.0	1.7	1.1	0.7	6.5
2.1	1.8	1.3	0.8	7
2.3	2.0	1.4	1.0	7.5
2.4	2.1	1.6	1.1	8
2.6	2.3	1.7	1.3	8.5
2.7	2.4	1.9	1.5	9
2.9	2.6	2.0	1.6	9.5
3.0	2.7	2.2	1.8	10

Application: Inform Restoration Altered Hydrologic Connectivity

Application: Inform Restoration Altered Hydrologic Connectivity

18

Application: Inform Restoration

Chinook River Estuary

Altered Hydrologic Connectivity

Application: Predict Effects of Hydrologic Change

Application: Predict Effects of Hydrologic Change

5

Potential Marsh Community (1.3 - 2.6m) Lower LiDAR Boundary (0.1m)

Food Web Research

Food Web Research

Food Web Research

Annual Detrital Contribution

Species/Strata	BBM	SRM	WI2	WHC	CS1	FLM
Carex lyngbyei (CALY)	840	1557	776	909		
Carex lyngbyei/						
Agrostis stolonifera	656.2					
Polygonum amphibium						472
Phalaris arundinacea /						
High Marsh				254		
Phalaris arundinacea				489	309	74
Low Marsh		260				
Schoenoplectus						
tabernaemontani		287				
Eleocharis palustris					483	75
Eleocharis palustris/						
Sagittaria latifolia					222	
Sagittaria latifolia				124		

Pacific Northwest

Conclusions

- Reference site data useful for informing restoration and predicting tidal marsh response to hydrologic change
- Macro-detritus production is greater in high marsh versus low marsh
- Restoration should consider targeting a diversity of marsh communities
 - High marsh restoration beneficial for increasing macro-detritus production, but will require active management to control reed canary

Acknowledgements

Field assistants: Nikki Sather Kathryn Sobocinski Jimmie Cotton Allan Whiting **Dave Nichols** Julia Ledbetter Krista Jones Keith Marcoe Amanda Bryson Cynthia Wright Ron Kauffman Sarah Apsens

Project Support:

Lower Columbia

