

Integrating Habitat Status and Trends and Stormwater/Water Quality Monitoring in SW Washington

Columbia River Estuary Workshop

Wednesday, May 28, 2014

The Lower Columbia Region

Middle

Columbia

River

Snake Sive

Lowe

Columbia

River

Cascade

Lines Coulds Di

otas Hires

IF Louis I

Kalama Li

Colombia Sire

Chillion Tille

NT Lowis Riv

Slow

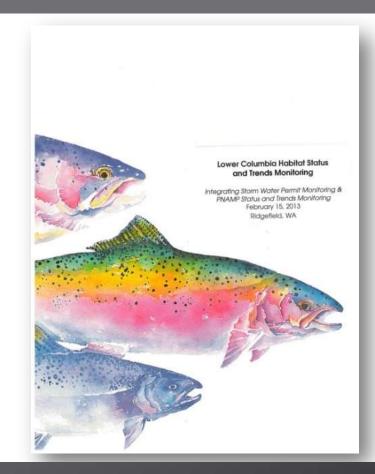
Upper Costilly Rive

Klickitat

Gorge

- so 5,704 square miles
- 80 7% of the state
- 80 525,000 people
- so 5 counties, 21 cities, and 3 Tribes
- 80 7 Dams, 4 Hydroelectric Operators
- so 2,280 river miles
- 80 17 major subbasins
- so 74 distinct salmon populations
- So Chinook, chum, steelhead, coho & bull trout are ESA listed as Threatened

Coast


Inspiration

Sonvergence of Status and Trends Monitoring

- Habitat Status and Trends
- Water Quality Status and Trends for Stormwater Impacts

So Opportunity for Efficiency

• Overlapping data needs

Collaboration

Son Collaborative Effort

- City of Longview
 - Funded by a Grant from Department of Ecology
- Lower Columbia Fish Recovery Board (LCFRB)
- Pacific Northwest Aquatic Monitoring Partnership (PNAMP)

• Regional Monitoring Partners

Goals

- Develop a coordinated monitoring design that <u>integrates</u> status & trends monitoring for habitat & stormwater impacts
- Make recommendations for an appropriate suite of metrics used to address both needs

Approach

Phased Approach:

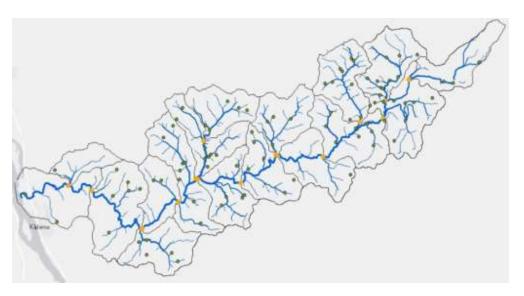
- Phase 1: Develop a draft monitoring strategy and design
- Phase 2: Refine
- Phase 3: Pilot Study
- ? Phase 4: Refine?

Phase 1 Tasks Draft Monitoring Strategy

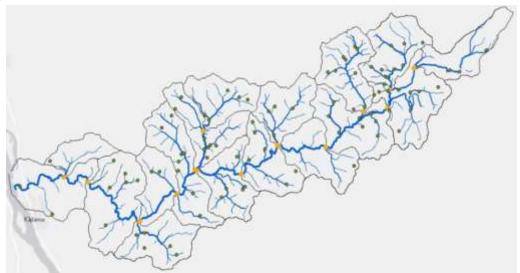
Develop 2-3
 monitoring
 scenarios

Most Benefit, Best Cost

Low Cost, ? Benefit


Sonduct trade-off analysis

Monitoring Scenarios Spatial Component

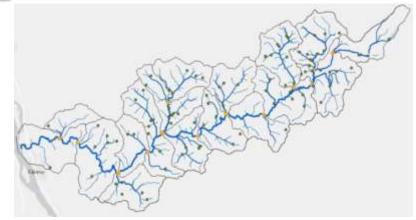

 Pseudo-probability design
 Spatial stratification
 Nested sampling

Monitoring Scenarios Spatial Component

- So Water Quality/Quantity Target Populations:
 - Sub-watersheds
 - (defined in Recovery Plan)
- Mabitat Target Populations:
 - Stream reaches

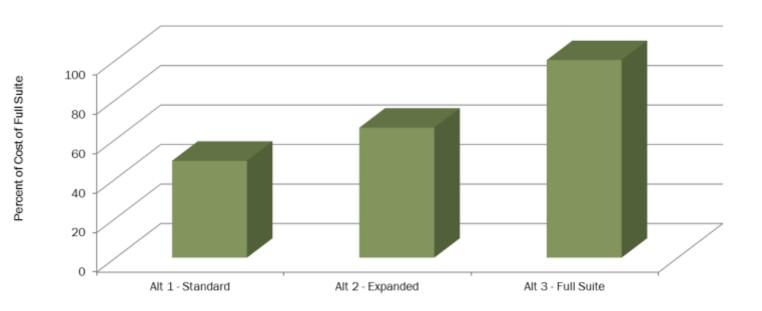
Sampling Component Metrics

- 80 Water Quality
 - Basics
 - Nutrients and Bacteria
 - Metals in Sediments
 - Flow
 - Macroinvertebrates


80 Habitat

- Channel Morphology
- Large Wood
- Substrates
- \circ Flow
- Basic Water Quality
- Macroinvertebrates

Sampling Component Level of Effort


Site Type	Monitoring Entity	
	Stormwater Permittees	ISTM Partners
Water Quality (WQ)	Full WQ Protocol / Basic Habitat Protocol	Full WQ Protocol / Full Habitat Protocol
Habitat	No Sampling	Basic WQ Protocol / Full Habitat Protocol

Trade-off Analysis

Comparison of Cost per Site for Water Qa/Qx Laboratory Analysis

*Numbers shown indicate the percentage of the cost per site of each alternative as compared to full suite of metrics (Alternative 3).

Phase 1 Recommended Draft Design Strategy

^{so}Summary

- Spatial Component
 - Pseudorandom design
 - Nested site allocation
- Sampling Component
 - Standard set of metrics
 - Relevant level of effort

Phase 2 Tasks

- Stage I Refine the monitoring design developed in Phase 1
 - Invite broader
 participation by OR and
 Federal agencies
- Stage II Develop
 an Implementation
 Plan

Phase 2

- 80 Refinement
 - SMART questions and objectives
 - Necessary metrics
 - Appropriate strata
 - Incorporate Oregon partners
- **So Implementation Plan**
 - How do we get enough samples to make regional assessment?
 - Frequency/Temporal scale on which to base trends?
 - How will we store and share data?
 - Quality Assurance Project Plan

Lessons Learned

- ⁵⁰ Be SMART. Focus on the questions we wish to address
- Be Inclusive
- Set priorities in recognition that resources are limited
- Recognize that an integrated monitoring program will not be perfect
- 50 The ability to share data is essential
- Regulatory processes are not conveniently packaged into a grant funding cycle

Questions?

- FOR MORE INFORMATION
- http://www.lcfrb.gen.wa.us/HSTM%20page.htm

http://www.pnamp.org/project/4585

Karen Adams, Habitat Coordinator, LCFRB <u>kadams@lcfrb.gen.wa.us</u>, 360-425-3274

Amy Puls, Staff Biologist, PNAMP <u>apuls@usgs.gov</u>, 509-538-2299 x258

