Wetland Inundation Patterns and Vegetation Communities in the Lower Columbia River and Estuary

Amy B. Borde, Heida L. Diefenderfer, Shon A. Zimmerman, Valerie I. Cullinan, Ronald M. Thom, and Ronald M. Kaufmann

2010 Columbia River Estuary Conference, May 26, Astoria Oregon
Overview

- Background
- Conceptual Model
- Vegetation Patterns
- Inundation Patterns
 - Temporal variability
 - Spatial variability
- Why it matters
Purpose of Research

► **Goal**
- To better understand habitat structure and to improve restoration success by evaluating reference conditions.

► **Objectives**
- Evaluate status and trends of the estuary ecosystem
- Provide a means of evaluating restoration actions
- Inform restoration design
What are the bounds of the controlling factors?
Are there differences in the controlling factors and the ecosystem structures due to:
- Location (distance from the mouth)
- Wetland type
- Inter-annual variability
Study Sites

Multiple Projects
- Ecosystem Monitoring Program (LCREP – BPA)
- Reference Site Study (LCREP – BPA)
- Cumulative Effects of Ecosystem Restoration (USACE)
- Tidal Freshwater Research (USACE)
Wetland Types

- Brackish Marsh
- Tidal Freshwater Marsh
- Sitka Spruce Swamp
- Scrub Shrub Wetland
- Riparian Forested Wetland
Metrics

- Conducted elevation surveys in conjunction with vegetation surveys.
- Data collected along transects using systematic sampling with a random start.
- Elevation collected with Real Time Kinematic (RTK) GPS, with auto level for areas of high tree cover.
- Referenced to NAVD88.
- Water level sensors were surveyed to evaluate hydrology relative to wetland morphology.
Discriminant Function Analysis

Based on 44 sites, 30 plant species (out of 220)
Discriminant Function Analysis

Kunze: 4 groups

1 = 0-64 rkm coastal surge plain wetlands
2 = 65-105 rkm (surge plain wetlands)
3 = 106-225 rkm (overflow plain wetlands)
4 = 226-235 rkm (CR Gorge wetlands)

Spatial Variability

Avg site elevation (m, NAVD88)

Avg site elevation (m, CRD)

rkm

m, NAVD88

m, CRD
Inundation

- Sum Exceedance Value
Temporal Variability

- 3 sites
 - 2 in Reach F
 - Campbell Slough
 - Cunningham Lake
 - 1 in Reach H
 - Franz Lake

July 26, 2005

July 21, 2008
Temporal Variability

- Dominant species don’t change

![Graphs showing temporal variability in species cover over time for Cambell Slough, Franz Lake, and Cunningham Lake.](image)
Temporal Variability

- Boundaries between vegetation communities don’t change
- Vegetation cover within communities does change
Temporal Variability

Sum Exceedance Value

\[SEV = \sum_{i=1}^{n} (d_{36}) \]

Conclusions

- Elevations of emergent wetlands cover a very narrow band
- Inundation patterns vary throughout the estuary
- Cover changes in response to changing water levels
- Overall vegetation in reference wetlands is stable and resilient to some variation in water levels
- Information on elevation and inundation patterns is critical to successful restoration.
Future Work

- Define elevation ranges for vegetation communities and inundation patterns for sites throughout the estuary.
- Evaluate spatial variability in SEV throughout the estuary.
- Calculate ranges of SEVs for individual species.
- Determine thresholds for invasive species.
- Disseminate information.

- Get feedback from restoration community (June SWG Meeting).