Salmon Life Histories and Habitat Associations in the Columbia River Estuary, 2002-2011:
 The Effects of Prior Rearing History on Estuary Habitat Use

Daniel Bottom ${ }^{1}$, David Teel1 ${ }^{1}$, Antonio Baptista², Lance Campbell${ }^{3}$, Kurt Fresh ${ }^{1}$, Susan Hinton ${ }^{1}$, George McCabe ${ }^{4}$, Regan McNatt ${ }^{1}$, Curtis Roegner ${ }^{1}$, Charles Simenstad ${ }^{5}$, and Lia Stamatiou ${ }^{5}$

[^0]

http://www.nwfsc.noaa.gov/ publications/scientificpubs.cfm

(contract reports, 2011)

US Army Corps of Engineers © Portland District

Criteria for Evaluating Estuarine Rearing Conditions for Salmon

Upriver Connections to the

Estuary:

- Effects of prior rearing on estuary habitat use (D. Bottom)
- Estuary life histories in adult returns (L. Campbell)
- Stock-specific patterns of estuary habitat use (D. Teel)

Estuarine habitat use by juvenile Chinook is size-related

Lord Island, Rkm 101

- Few fish in wetland channels > 70mm
- \% fry decreases with depth and exposure:
--Main stem: 38-67\%
--Back side: 75-76\%
--Interior: >93\%

Wallace and Lord islands, 2006-08

Mean estuary residence time varies with fish size

- Subyearling Chinook enter the estuary over a wide range of sizes
- Residence time decreases with size at estuary entry
- In 2003-05 >50\% of hatchery fish released at sizes $>90 \mathrm{~mm}$ FL

Total Releases Columbia River Hatchery Chinook Salmon

[^1]
Percent Hatchery Clipped Chinook 2007-2008

Chinook Length Frequency

(All months and habitats 2010)

Chinook Length Frequency (unmarked)

Chinook Length Frequency (marked)

Chinook Salmon Hatchery Releases by ESU Hatchery Scientific Research Group (2009)

- ~2/3 of all hatchery releases in the basin come from two ESUs
- ~1/2 of all hatchery Chinook are released into the Lower CR ESU
- Since 2000 one hatchery (Spring Creek) accounted for ~24\% (15-47\%) of all subyearlings released annually

Smolt Passage Index Bonneville Dam 2007-09

(Data from CR DART and
Fish Passage Center)

Genetic Stock Composition 2009 Hayden Island (~Rkm 169)

$$
(N=273)
$$

- Beach-seine sampling, City of Portland
- Collected by Lyndal Johnson

Spring Cr. Hatchery Releases

- April 13: 13 million
- May 1: 9.5 million
(D. Teel, NWFSC)

The phenotypic behavior of salmon in the estuary are largely a downstream expression of hatchery practices

- Hatcheries account for the majority of Chinook salmon produced in the Columbia R. basin
- Hatchery location \rightarrow time of estuary arrival
- Timing and number of fish released \rightarrow temporal patterns of abundance and stock composition in the estuary, particularly in spring/summer
- Size at release \rightarrow estuary residence times, estuary habitat selection, and time/size at ocean entry
- Prior rearing histories constrain life history expression in the estuary

Conclusions

- Hatcheries have replaced the dispersed distributions and emergence times of natural populations with "point sources" of similarly-sized individuals released in concentrated pulses (April - July)
- Hatchery-reared salmon tend to enter the estuary at a larger mean size (and a narrower size range), select deeper habitats further from shore, and reside shorter periods than many naturally-produced juveniles
- But hatchery and wild salmon distributions overlap in the estuary; not all hatchery fish migrate rapidly
- Contemporary abundance patterns, stock composition, habitat use, and residency in the estuary are largely driven by hatchery programs

Some Key Management Questions

- Does intensive hatchery production limit the use or effectiveness of estuary restoration projects for atrisk populations?
- How do naturally-produced and hatchery-reared salmon interact in the estuary?
- Do intensive hatchery releases alter estuarine food webs, predation pressure, or the estuary's capacity to support naturally-produced salmon?
- Based on present release levels and methods, are hatchery production and estuary restoration compatible management strategies ?

Thanks!

- Co-authors:

Lance Campbell
Susan Hinton
George McCabe Regan McNatt
Lia Stamatiou
David Teel

- Lyndal Johnson and City of Portland
- Cindy Studebaker
- Sponsors
U.S. Army Corps of Engineers NOAA Fisheries

[^0]: ${ }^{1}$ Fish Ecology Division, Northwest Fisheries Science Center, Seattle, WA
 ${ }^{2}$ Institute of Environmental Health, Oregon Health and Science University, Beaverton, OR
 ${ }^{3}$ Washington Department of Fish and Wildlife, Olympia, WA
 4Pacific States Marine Fisheries Commission, Portland, OR
 ${ }^{5}$ School of Aquatic and Fishery Science, University of Washington, Seattle, WA

[^1]: Data Source: Streamnet, provided by Phil Levin, NOAA/NMFS

