Resource Partitioning and Life History Patterns Among Salmonids in the Estuarine Habitat Mosaic

University of Washington May 26, 2010

Salmon in the Estuarine Nursery

Simenstad et al. 1982

Estuary hypothesized to provide:1. Acclimatization to salinity2. Protection from predators3. Optimal foraging opportunity

0 550 1,100 2,200 Meters

Estuarine Habitat Mosaic

Columbia River Estuary

Landsat TM cover class

- Herbaceous wetland Shrub - scrub wetland Mud Sand
- Deciduous forest wetland Coniferous forest wetland Mixed forest

Contemporary bathymetry

Shallow (6.8 m)

Deep (-42 m)

Kilometers

8

Resource Partitioning

"differences in the way species in the same community utilize resources" Schoener 1974

Resource Axes:

- Temporal
- Spatial (habitat)
- Trophic (diet)

Life history patterns

 The particular pathway that a individual or group takes through space and time (Liss et al 2006)

 Movements/migrations between habitats and amount of time (residence) spent in habitats

Objectives

- Examine how different salmon species and life histories use heterogeneous estuarine habitats
 - Resource partitioning among juvenile coho, chum, and Chinook salmon
 - Life history patterns among juvenile coho salmon

Grays River Estuary

a little and a lit

Grays Bay

Columbia River Estuary

Astoria

Warrenton

© 2010 Google Image State of Oregon Image U.S. Geological Survey Data SIO, NOAA, U.S. Navy, NGA, GEBCO 46°14'47.91" N 123°49'25.33" W elev 0 ft Google

Gravs River

Imagery Dates: Jun 29, 2005 - Jun 30, 2006

5.64 mi

Eye alt 19.46 mi 🔘

Johnson Farm Restoring Emergent Wetland

Natural Forested Wetland

Image State of Oregon

Pointer 46°18'49.15" N 123°40'11.78" W elev 11 ft

© 2008 Tele Atlas Image © 2008 DigitalGlobe Streaming |||||||| 100%

Eye alt 11536 ()

JOHNSON FARM RESTORING EMERGENT WETLAND

NATURAL FORESTED WETLAND

Resource Partitioning

Results: Temporal Partitioning

- Bimodal migration
- Chum earlier than coho/Chinook
- Coho/Chinook early peak in 2008

JohnsonE JohnsonW Forested

JohnsonE JohnsonW River

Results: Trophic Partitioning

Relative gravimetric diet composition

Schoener's Index of Overlap

$$\alpha = 1 - 0.5 * \sum \left| p_{xi} - p_{yi} \right|$$

for all *i*, where p_{xi} is the proportion of item *i* in group *x* and p_{yi} is the proportion of item *i* in group *y*

 $0 \le \alpha \le 1$

1 - complete overlap
 0 - complete partitioning
 <0.60 - some partitioning

Indices of Overlap

Species Pair	Temporal	Spatial	Trophic		
Chinook ≤60mm – Chinook >60mm	.464	.821	.384		
– Chum	.481	.446	.442		
– Coho ≤60mm	.650	.489	.299		
– Coho > 60mm	.530	.408	.250		
Chinook >60mm – Chum	.039	.410	.409		
– Coho ≤60mm	.331	.397	.432		
– Coho >60mm	.715	.389	.264		
Chum – Coho ≤60mm	.440	.752	.482		
– Coho >60mm	.052	.423	.257		
Coho ≤60mm – Coho >60mm	.405	.734	.352		
Mean	.411	.538	.357		
Primary Secondary					

Realized Benefits of Partitioning

 Hypothesis: Expect greater ration sizes when overlap is minimal

 Results: Not apparent from regression of ration against any indices of overlap

Conclusions: Resource Partioning

- Dominant mechanism: Trophic
 - Ontogenetic diet shifts
 - Surface vs. Epibenthic feeding (Coho v. Chinook)
- Secondary mechanism: Temporal
 - Migration timing
- Spatial partitioning?
- No realized benefit?
 - Low juvenile salmon densities?
 - Wrong measure?

Juvenile coho salmon life history patterns

Patterns of movements and residence

Migrant trap

ESTUARY

UPRIVER

 <u>Resident</u>- fish that remains in the upriver part of a watershed during its first year
 <u>Migrant</u>- fish that moves downstream

Pointer 46*18'33.84" N 123*40'46.74" W elev 10 ft

Streaming ||||||||| 100%

Results: Migrations and Estuarine Residence

Estuary
 catches
 persist past
 migrations

Fork length (mm)

Results: Migrations and Estuarine residence

- Emigrate at threshold size
- Residents
 smaller than
 migrants/estuary
 residents

Scale pattern analysis

(Lee 1920, Francis 1990, Ricker 1992)

Scale pattern analysis

Faster growth=

- Widely spaced circul
- Thicker circuli

Slower growth=

- Narrowly spaced circuli
- Thinner circuli
- Direct comparisons of the same circuli→ compare fish collected at different times

Scale pattern analysis

- Migrant 1- NO scales
- Early Estuary
 - Estuary growth signature
- Migrant 2
- Estuary Late

 Mix of upriver and estuary-formed circuli

Results: Growth trajectories and life history patterns

- Late estuary= migrate after migrant trap shut down in Aug?
- From another river? OR slow growth in estuary?

Results: Life history patterns

Do migrants return back upriver?

Yearlings group
 with Residents and
 Late Estuary

 May be Upriver Residents
 OR may be Late
 Estuary that return
 back upriver for the
 winter

Conclusions: Coho salmon life history patterns

- Diversity of patterns
 - Multiple migrations
 - Estuary utilization
- Benefits may vary among years

- Estuary used by multiple species
 - Resource partitioning among species
 - Trophic dominant
 - Temporal secondary
 - Multiple patterns within coho salmon
- Heterogeneous habitats, diverse habitat use

Conservation Implications

• Manage from a watershed perspective

• Conserve/restore broad range of habitats

Conserve/restore interconnected habitats

Acknowledgements

- Chris Eaton
- WET lab
- Field help

- Washington Dept of Fish and Wildlife
- NOAA
- CREST

Resource Partitioning

Schoener 1974

- Habitat/spatial partitioning dominant in terrestrial systems
- Ross 1994
- Trophic partitioning dominant in aquatic systems
 - Less habitat heterogeneity
 - Greater resource mobility

Mean Diet Composition

Dominant Prey

Index of Preponderance

(Marshall & Elliott 1997)

$$IP_i = \frac{p_i f_i}{\sum p_i f_i}$$

 p_i = mean gravimetric proportion of prey item *i* in diets

 f_i = frequency of occurrence of prey item *i* in diets

Chinook ≤60mm		Chinook > 60mm		Coho ≤60mm		Coho >60mm	
Prey	IP	Prey Prey		Prey		Prey	IP
Emergent Chironomid	0.56	Emergent	0.56	Emergent	0.56	Epibenthic	0.63
Epibenthic	0.30	Epibenthic	0.30	Drift	0.31	Drift	0.24
Drift	0.14	Drift	0.14	Epibenthic	0.12	Emergent Chironomid	0.13

Prey Groupings

Grouping	Order(s)	Primary Taxa	
Americorophium	Amphipoda	A. spinicorne, A. salmonis	
Anisogammaridae	Amphipoda	Eogammarus, Ramellogammarus	
Annelida	Clitellata (class)	Oligochaeta, Hirudinea	
Brachycera	Diptera	Empididae, Ephydridae	
Brachycera larvae	Diptera	unknown	
		Chironomidae	
		Chironomidae	
Coleoptera	Coleoptera	Staphylinidae, Cantharidae	
Collembola	Collembola	Isotomidae, Sminthuridae	
Other Diptera	Diptera	unknown	
Ephemeroptera	Ephemeroptera	Baetidae	
Ephemeroptera larvae	Ephemeroptera	Baetidae	
Fish	Gasterosteiformes	Eggs & juveniles	
Hemiptera	Hemiptera	Aphidoidea, Cicadellidae, Psyllidae	
Hymenoptera	Hymenoptera	Ichneumonidae, Chalcidoidea	
Other Insecta	Insecta (class)	Thysanoptera, Psocoptera, Neuroptera	
Insecta larvae	Insecta (class)	Coleoptera, Hymenoptera, Neuroptera	
Nematocera	Diptera	Ceratopogonidae, Sciaridae, Psychodidae	
Nematocera larvae	Diptera	Ceratopogonidae	
Other	n/a	Hatchery food	
Other Epibenthic	Various	Isopoda, Mysidacea, Amphipoda	
Other Terrestrial	Various	Acari, Araneae, Pseudoscorpionida	
Plecoptera	Plecoptera	unknown	
Plecoptera larvae	Plecoptera	unknown	
Trichoptera	Trichoptera	Hydroptilidae	
Trichoptera larvae	Trichoptera	unknown	

Results: Fish size

Size remains
 constant
 = migrate
 following
 emergence

Results: Fish size

- Size increases
- Migrants
 larger than
 residents

Chapter 2B: Methods- Scale pattern analysis Growth trajectories

Mean circuli spacing

Reduced growthNarrowly spaced, thin circuli

Resident

Consistent growth
Widely spaced, thick circuli
Migrant group 1 in estuary
Migrant group 2

Early Estuary and Migrant 2 highest growth rates
Late Estuary different pattern than Early Estuary

