Progress in Habitat Restoration and Protection in the Columbia River Estuary

Chris Collins, Catherine Corbett, Keith Marcoe, and Evan Haas Lower Columbia River Estuary Partnership

Outline of Today's Presentation

- Background on Estuary Partnership Restoration Program
- Summary of restoration in the estuary over the past decade
- Cost analysis
- Thoughts and considerations as we move forward
- Questions

Funding Partners

NPCC/BPA

- ca. \$4,000,000 (2003-2007)
- ca. \$9,000,000 (2008-2010)

NOAA – Community Based Restoration

- ca. \$666,250 (2004-2007)
- ca. \$350,000 (2008-2010)

NOAA – Marine Debris Removal

- ca. \$100,000 (2008)

EPA – Targeted Watershed – ca. \$700,000 (2003-2005) –NEP funds (2003 to date)

Corps of Engineers - Section 536 - ca. \$2,000,000 since 2002

Implementation Partners

- Local Governments
- SWCDs
- Conservation Organizations
- Watershed Councils
- Councils of Government
- Federal and State Agencies
- Consulting Firms

...Howhere Wee to the end ow

...How We Got There

...How We Got There

...How We Got There

...HoostVanabytsiThere

Criteria:

- Only looking at EP-funded projects (full or partial funding)
- Include a bay whole alone svalle this reatare tions cost??
- Project had to be complete
- Used dollar value from the year the project was funded (no effort to standardize for inflation)
- Did not consider costs for initial development (finding sites, meeting with landowners, etc.) or effectiveness monitoring
- Considered all acreage (e.g., not just portion of site inundated by a dike breach)

How Do You Categorize Costs?

Level 1 – Site

Level 2 – Project Mirror Lake Restoration Project – Part I (2008) Mirror Lake Restoration Project – Part II (2010)

Level 3 – Type Four Types of Restoration: 1) Passage Improvement 2) Channel Modification 3) Veg. Enhancement 4) Tidal Reconnection
 Level 4 – Phase Four Phases: 1) Planning/Outreach

2) Design/Permitting

- 3) Implementation
- 4) Monitoring

Level 3 – Types of Restoration

Channel Modification

Passage Improvements

Tidal Reconnections

CE & MORNIN AND AND STR

Vegetation Enhancement

Levels 3 and 4 - Types & Phases

For each type, we analyzed costs for two phases

Level 3 – Type of Restoration

Photos courtesy of Parametrix

Implementation

Design/Permitting Costs per Type

Restoration Type

<u>n</u>

Average Costs per Project

Average Unit Costs

Passage Improvement

\$ \$

Channel Modification

Tidal Reconnections

Implementation Costs per Type

Restoration Type	<u>n</u>	Average Cost per Project	Average Unit Cost
	4	\$129,000	\$47,000 per mile
Passage Improvement			
	5	\$150,000	\$167,000 per mile
Channel Modification			
Vegetation Enhancement	9	\$97,000	\$2,700 per acre
Tidal Reconnections	2	\$364,000	\$8,900 per acre

Total Cost per Restoration Type

Cost per Project Phase

All four restoration types combined.

How Do We Get To 19,000 Acres?

...and how much will it cost?

In order to maximize the efficiency of our restoration funds, we could consider....

- Looking for LARGE projects Why? – Unit costs <u>typically</u> are inversely related to project size
- 2. Prioritizing Vegetation Enhancement and Passage Improvement projects Why? – Costs per acre are roughly ¼ of those for TR and CM projects
- Looking for opportunities on public land Why? – Acquisition is expensive

How Do We Get To 19,000 Acres?

HOWEVER, cost is only one factor to consider when analyzing a project!!

Other Factors:

- benefits (cost/benefit ratios)
- available opportunities (e.g., limited supply of public land; funding priorities)
- typical failure rates (by restoration type)
- project duration
- deferred benefits
- ✤ and on and on and on.....

Next Steps

1) Hire an intern to Expand database (i.e., sample set)

- Obtain data for additional EP-funded projects
- Obtain data for non-EP projects (e.g., OWEB)

2) Hire an intern to Consider other metrics. (Is acreage the best metric to assess goals?)

- It's the easiest to track and the most straight-forward
- ➤ But.....
 - Does not capture Channel Mod. and Passage Improvement projects
 - May not accurately account for benefits to target species or habitats
- > Other options:
 - Survival benefits
 - CWS and PSU methodologies
 - Others?
- 3) Hire an intern to Consider using cost/benefit analyses to inform project development and selection.
- 4) Hire an intern to Consider using unit costs to assess funding requirements for different recovery goals and programs.

Questions?

Acknowledgements: CREST City of Portland CLT SBWC Cowlitz Tribe NPCC BPA EPA NOAA USACE

Contact for More Information: Catherine Corbett (503) 226-1565 Ext 240, corbett@lcrep.org