Predicting and Monitoring the Effects of a Habitat Restoration Project on Metapopulation Viability of Two Federally Listed Species in a Tributary of the Columbia River

David Richards1 and Tristan Arrington2

1Senior Research Ecologist
2RN (making lots more money)
• **EcoAnalysts**
 – Leading algal and benthic macroinvertebrate taxonomy labs in U.S.
 • Freshwater, estuary, and marine
 – Primary and secondary production studies
 – Food web studies
 – Biodiversity and IBI analysis and development
 – MPVAs
• This presentation part of a nine year Idaho Power Company- FERC relicensing project on mid-Snake River
Introduction

Loss of habitat and invasive species are the leading causes of extinction worldwide

- Habitat restoration/reduced impact of invasive species critical for survival of many T and Es
- Most T and Es now occur as isolated or metapopulations
- Spatially explicit predictive models that incorporate metapopulation dynamics can be useful tools: pre- restoration of habitats
What is a metapopulation?

“Populations within a population”

Fragmented populations

- Limited dispersal
- Anthropomorphic disturbance (populations are becoming more fragmented)

Viability mostly affected by:

- Habitat environmental correlation
- Dispersal (connectivity)

In a metapopulation, populations “blink in and out of extinction” (Hanski 1999)
There are several threatened and endangered freshwater gastropods, mid-Snake River, Idaho, a tributary of CR

Lanx sp. (Banbury Springs limpet)

Taylorconcha serpenticola (Bliss Rapids Snail)

There is also this bad girl

Potamopyrgus antipodarum (NZMS)
Taylorconcha serpenticola
(Bliss Rapids Snail)
Current known distribution of *Taylorconcha* (~80 river km)
Lanx sp. (Banbury Springs limpet)
Current known distribution of *Lanx*
• Both BRS and Lanx prefer cold-water, lotic, cobble habitats
New Zealand Mudsnail (Potamopyrgus antipodarum)

HIGHLY INVASIVE
Objective

Model the effect of the reduction of Morgan Lake on the viability of *Bliss Rapids Snail* and *Lanx* by:

- Altering dispersal rates
- Increasing habitat
- Decreasing invasive *Potamopyrgus* densities

Recommend management strategies
Morgan Lake at Banbury Springs
RAMAS Metapop

• Parameters held constant
 ✓ 10,000 simulations (replications)
 ✓ 200 time steps (generation time)
 ✓ Correlation (habitat/environmental)
 ✓ Density dependence
 – *Taylorconcha* density dependent (scramble competition)
 – *Lanx* density independent (perhaps Allee effect)

• Parameters modified (scenarios/sensitivity)
 ✓ Dispersal
 ✓ Increased habitat (population abundance)
 ✓ Reducing std dev. of r of *Taylorconcha* (surrogate for *P.a.* densities)
 Interval Extinction Risk (IER) defined:

IER is the probability that BRS or Lanx metapopulation density will fall below a range of densities at least once during the 200 time steps.

Each point in the curve can be interpreted as “there is a Y% risk that the metapopulation density will fall below X (density) at least once during the 200 time steps”.

(RAMAS® Metapop by H.R. Akçakaya. Copyright © 1998 by Applied Biomathematics)
Increased Dispersal of Taylorconcha

Effect of Dispersal on Taylorconcha Extinction Risk

Dispersal = \downarrow \text{Extinction Risk}

- with Morgan Lake (no dispersal)
- without Morgan Lake (.001 dispersal)
- without Morgan Lake (.01 dispersal)
- without Morgan Lake (complete dispersal)
Increased habitat for Taylorconcha

Increased Habitat Availability for Taylorconcha

Habitat = \downarrow \text{Extinction Risk}

- Orange line with Morgan Lake (no change)
- Purple line without Morgan Lake
Increasing Habitat, Decreased Potamopyrgus

Increased Habitat Availability, Decreased Potamopyrgus

- Habitat + Potamopyrgus = Extinction Risk
- With Morgan Lake (no change)
- Without Morgan Lake

Decreasing Densities

Probability

0.0
0.2
0.4
0.6
0.8
1.0

Decreasing Densities

Habitat + Potamopyrgus = Extinction Risk

With Morgan Lake (no change)
Without Morgan Lake
Increased Dispersal of Lanx

Effect of Dispersal on Lanx Extinction Risk

Dispersal = ? Extinction Risk

- with Morgan Lake (no dispersal)
- without Morgan Lake (.001 dispersal)
- without Morgan Lake (.01 dispersal)
- without Morgan Lake (.1 dispersal)
- without Morgan Lake (complete dispersal)

Decreasing Densities

Probability
Increased habitat for Lanx

Increased Habitat Availability for Lanx

![Graph showing probability vs. decreasing densities with and without Morgan Lake.](image)

- **Dispersal = 0.01**
- **Habitat = Extinction Risk**

- **With Morgan Lake (no change):** Orange line
- **Without Morgan Lake:** Blue line
Conclusions

For **BRS**:

- Increased dispersal
- Increased habitat
- Decreased *Potamopyrgus*

\[\text{\{Reduced Extinction Risk\}}\]

For **Lanx**:

- Increased habitat = reduced Extinction Risk
- Increased dispersal = does not always reduce Extinction Risk

Viability is more sensitive to dispersal rates because of initial low densities.

There is an optimal dispersal rate for *Lanx*, which needs to be determined.
Recommendations

- Reduction of Morgan Lake is beneficial to *Taylorconcha* and *Lanx* viability: however, careful planning is necessary
- Slow drawdown of ML may be better
- Trans-locate super colony (genetic considerations)
- Add cobble habitat to restored sections
- Monitor all three species populations before and after restoration
Relevance to CRE

• MPVAs often used for salmonid management but rarely used for mollusks
• MPVAs best used to compare management/restoration strategies not as absolute predictors of viability
• Understanding and incorporating metapopulation dynamics is important for most T and E restoration projects in CRE
Acknowledgments

Idaho Power Company, Boise, Idaho

US Fish & Wildlife Service, Snake River Field Office, Boise, Idaho