Ecology of Juvenile Salmonids in Tidal Fresh and Estuarine Waters

Curtis Roegner ${ }^{1}$
 Kathryn Sobocinski ${ }^{2}$

Columbia Estuary Research Conference

Astoria, Oregon 29 April 2008

2
Pacific Northwest
National Laboratory
Wprathtrythryth
L.S. Evpromed Evry

1. Contrast estuarine and tidal freshwater habitat
2. Concentrate on subyearling chum \& Chinook salmon
3. Temperature effects

Temperature and salinity patterns: Marine influences

$$
\begin{array}{|rrrrr}
\hline-1996 & -1997 & -1998 & -1999 & -2000 \\
-2001 & -2002 & -2003 & -2004 &
\end{array}
$$

Month
A. Baptista

Ocean temperature influence: lower Cathlamet Bay

$$
-2001-2002-2003-2004
$$

Studies and sample sites 2002-2007

Studies - Spatial and temporal scales

1. Purse seine vrs beach seine
2. Tidal freshwater Sandy River delta
3. Landscape-scale time series monitoring
4. Synoptic spatial-scale "snapshot"
5. Wetland habitat use

Salmon in the Estuary

Salmon in the Estuary

Spatial distribution
Larger fish in mair stem - move through system relatively quickly

- Smaller fish in shallow water longer residence

Genetic Analysis May \& July 2002-2003
"Stream-type" lineage
"Ocean-type" lineage

Upper Columbia R. sp
Snake R. sp/su
Mid-Columbia R. sp
Upper Willamette R. sp
Lower Columbia R.
Upper Columbia R. su/fa
Snake R. fa
Deschutes R. su/fa

Beach Seine

Purse Seine

Method overview

Beach seine sampling: spatial scale
Trap net sampling: Habitat study

Shallow water sites

- Counted all fish
- Measured up to 30 individuals / sps
- Measured up to 100 salmon / sps
- Up to 30 salmon retained

■Genetic (stock identification)
■Stomach contents (food habits)

- Sampling in tidal channels
- Trap set at high tide and sampled at low tide
- Emergent marsh, scrub-shrub, forested wetlands

Community structure

Chinook abundance \& Temperature

Studies - Spatial and temporal scales

1. Purse seine vrs beach seine
2. Tidal freshwater Sandy River delta
3. Landscape-scale time series monitoring
4. Synoptic spatial-scale "snapshot"
5. Wetland habitat use

Monthly water parameters measured during beach seining

Month

Temperature
Exceeds reference Jul-Sep

- TFW > estuary

Salinity

- Measurable salinity during all samples in estuary

■ Spatial variation along salinity gradient
■Chinook Salmon 2.4-5.0\% of catch
■Chum Salmon <1-5\% of catch
-Chum more abundant on Washington side

Stickleback
Surf smelt
Shiner perch
Chinook
English sole
Starry flounder
Staghorn sculpin
Chum
Shad
< 1 \%

Washington

Freshwater

Distribution of chum spawning grounds

Historic annual run > 1.3 million fish, After 1959 between 300 and 6000 fish

- Historic distribution: CR mouth to Walla Walla River (mainly below Celillo Fal

Present pattern: limited number of spawning locations on Washington side:
\Rightarrow Chinook River \& Grays River
\Rightarrow In mainstem CR near Ives Island, and nearby Hamilton and Hardy Creeks
\Rightarrow In mainstem near l-205 bridge, also near Multnomah Falls
Extirpated from Oregon side.
Appear to spawn where gradient changes and hyporheic flows exist.

ChumPassegeBormeille

http://wdfw.wa.gov/fish/chum/chum-7.htm

Lower estuary Middle estuary
Tidal freshwater

Chum: -85 \% are <60mm max size 85 mm Fry migrant LH

Broad similarity btw years.
\square Higher CPUE in TFW.

- 20 \% are <60 mm
- Remainder are
fingerlings \& yearlings

Fork length (mm)

Studies - Spatial and temporal scales

1. Purse seine vrs beach seine
2. Tidal freshwater Sandy River delta
3. Landscape-scale time series monitoring
4. Synoptic spatial-scale "snapshot"
5. Wetland habitat use

- Spatial trend: Similar patterns between Islands
- Annual trend: Peaks in Apr-May, Absent Jul-Aug

Emergent

Shrub

Forest

Size frequency by Habitat type
-Fry < 60 mm dominate catch except in emergent marsh.
\square Fish present longer in emergent marsh.

Fork length

Chinook abundance and temperature

? Hatchery or Wild

9710 total Chinook examined

AD. Clip	Pelvic Clip	CWT	AD + CWT	PIT	Total	\% Total	Mean FL	SD
222	48	19	78	2	369	3.8	125.3	42.5

1. Salmon are abundant in shallow water habitats at all spatial and temporal scales investigated. Restoration will benefit migrants (and the rest of the ecosystem!).
2. Chum are fry migrants that leave by May; subyearling Chinook have year-round presence. Chum lacking spawning habitat; Chinook lacking rearing habitat.
3. Chinook exhibit spatial trends in abundance and size over the estuarine gradient:

- larger fish in marine influenced zones
- higher CPUE in tidal freshwater zones Identify and enhance juvenile rearing in estuarine transition zone.

4. Chinook CPUE in main stem and wetland sites declines markedly >August, but abundance can be high at temperatures > $20^{\circ} \mathrm{C}$. Stressed?
5. Salmon fry were commonly found as late as August at most shallow water habitats. Origin?
6. Very few fish were marked, and so origin is uncertain (presume most are hatchery). Tag all hatchery fish! PIT tag all possible!

