Design Guidelines for the Enhancement and Creation of Estuarine Habitats in the Middle Reaches of the Lower Columbia River

Outline

- I. Nature of Project/Background
- II. Approach to Guideline Development
 - A. Conceptual Model
 - B. Data Collection
- III. Design Guideline Q & A

Nature (or Nexus?) of Interest: Regional Sediment Management-Ecosystem Restoration

•Phase 1-4 Channel Improvement Project-22.7 million cu. yards

•O & M Volumes (projected)=16.1 million cu. Yards

•Need for a "coordinated regional sediment management plan to: encourage the <u>beneficial use</u> of sediment; <u>restore healthy ecosystems</u>; protect (coastal) beaches; maintain safe navigation; improve efficiency of decision-making; and rely on scientific data and methods for modeling, monitoring and adaptive management" (Lower Columbia Solutions Group, 2010)

Background: Past Efforts

•159 Plan(2002)-Habitat Creation-1 of 5 restoration strategies

•LCREP Report (2007)-Proposed a range of experimental restoration techniques related to manipulation of dredge material to promote estuarine wetland development

> •Investigated success/"lessons learned" from SF Bay and Frazier River systems

 Introduced need to broaden restoration measures (i.e."scrape down";pile modification)

Prepared for the Lower Columbia River Estuary Partnership

Prepared by

PC Trask & Associates

August 15, 2007

Background: Past Efforts

Habitat Creation and Enhancement Feasibility Investigation for the Lower Columbia River Ecosystem Restoration General Investigation Feasibility Study

Prepared for Portland District, U.S. Army Corps of Engineers by PC Trask & Associates, Inc.

SEPTEMBER 2009

Historic Analysis Goat Island 1929-1957

6

Goat Island 1977-Present

Key recommendation: Apply existing planning templates (SF Bay/Puget Sound)

Design Guidelines for Tidal Wetland Restoration in San Francisco Bay

Prepared by Philip Williams & Associates, Ltd. and Phyllis M. Faber Prepared for The Bay Institute Funding provided by the California State Coastal Conservancy

Approach-Design Guideline Development

Phase 1

- I: Existing Data Collection
- 2: Planning and Design Methodology
- 3: Conceptual Models
- 4: Historic Analysis of Habitat Evolution
- 5: Field Data Collection
- 6: Methodology and Field Data Report
- Phase 2
 - 7: Design Criteria
 - 8: Final Design Guidelines Report

Approach-Design Guideline Development

Phase 1

1: Existing Data Collection:

- ✓ Ongoing research:
 - Cumulative Effects Project
 - Reference Site Study
 - Hydraulic geometry reports
 - Fish use monitoring
- ✓ Water Level
- ✓ Classification System
- ✓ ACOE Pile Dike/Dredging Reports
- ✓ Historical Photos
- ✓ LIDAR
- ✓ ACOE Flood Profiles

Approach-Design Guideline Development

Phase 1

- I: Existing Data Collection
- 2: <u>Planning and Design Methodology</u>

Goals:

- Support the design process for the creation, enhancement and expansion of wetland, floodplain and shallow water habitats to support juvenile salmonids;
- Develop guidance on the creation of a mosaic of wetland and floodplain habitats in the estuary that support juvenile salmon and steelhead;
- Develop recommendations on the restoration of estuarine processes that are supportive of wetland and floodplain habitats; and criteria for the creation of new habitat on future dredged material disposal locations or in the enhancement of habitat on existing dredged material islands.

Utilize existing conceptual Models: USACE/PNNL

Conceptual Models: NOAA

FIGURE 3-3 Conceptual Model of the Columbia River Estuary Food Web

Approach-Refine model and insert actions

Field Data Collection-Mid Channel Islands, HG Reaches C-E

Field Data Collection-Mid Channel Islands

Parameters desired:

- Vegetation-Elevation Relationships
- Hydraulic Geometry
- Hypsometric Curves
- Drainage Density

Field Data Collection-Mid Channel Islands

Design Guidelines Questions:

WHAT ELEVATION SHOULD THE FLOODPLAIN BE?

	Gage / Island	Skamokawa Tide Gage	Wallace Island	Hump- Fisher Island	Lord- Walker Island	Longview Tide Gage	Sandy Island	Goat Island	St. Helens Tide Gage
Floedplain	River Mile	33.3	49.0	60.0	62.5	66.4	75.0	81.0	85.6
	Maximum Flood ¹ Level (ft NAVD)	13.2	14.5	15.4	15.6	15.9	17.0	17.8	18.4
	Mean Flood Level ¹ (ft NAVD)	11.7	12.9	13.7	13.9	14.2	15.1	15.6	16.1
	Annual Flood Level ¹ (ft NAVD)	10.6	11.6	12.2	12.4	12.6	13.1	13.4	13.7
	MHHW (ft NAVD)	8.9	9.2	9.4	9.5	9.6	9.5	9.5	9.4
	MTL (ft NAVD)	5.2	6.1	6.8	7.0	7.2	7.4	7.5	7.6
	MLLW (ft NAVD)	1.3	3.1	4.3	4.6	5.0	5.5	5.9	6.1
			F	Surfa	ace Profiles				

Surface Pr	face Profiles	
PWA Ref# 2023	ESA PWA	

Design Guidelines Questions:

WHAT ELEVATION SHOULD THE EMERGENT MARSH BE?

Island	Minimum Marshplain Elevation (ft NAVD)	Average Marshplain Elevation (ft NAVD)	Maximum Marshplain Elevation (ft NAVD)
Wallace	4.5	5.5	6.5
Hump-Fisher	5.0	6.3	7.5
Lord-Walker	6.0	7.0	8.0
Sandy	6.5	7.0	7.5
Goat	6.0	7.0	8.0

Design Guidelines Questions:

HOW LARGE AND WHAT SHAPE SHOULD THE WETLAND BE? (Assumption Target Depth =1.5 feet below MLLW for juvenile salmonids)

A_d=3.2922⁻¹ D_c ^{1/0.215}

Gage/Island	River Mile	Target Channel Depth below MHHW (ft)	Minimum Drainage Area to sustain Target Channel Depth (ac)
Skamokawa	33.3	9.2	119.7
Longview	66.4	6.2	19.3
St Helens	85.6	4.9	6.6
Wallace	49.0	7.8	54.9
Hump-Fisher	60.0	6.8	29.1
Lord-Walker	62.5	6.6	24.8
Sandy	75.0	5.6	12.3
Goat	81.0	5.2	8.7

Build in research findings to add rigor: (i.e. PNNL Reference Site Study)

Additional Guidance

- •Consider Wind-Wave processes
- •Need to create shelter effects
- Accretion rates
- •Sea level rise/shifting hydrographs
- •Changes in sediment budget

Management Implications

•Experimental in nature necessitates adaptive management approach

•Apply planning approach suggested in report :

✓ Selection of planning horizons

✓ Establish planning goals and objectives AND operation objectives

✓ID opportunities and constraints including NO ACTION

✓ Develop monitoring and long term management plan in concert with project partners

•Interface with existing RME and RSM programs in Columbia River Estuary

Big Thanks!

- •Sharon Schultz, Cindy Studebaker (USACE)
- •Craig Haskell, Steve Waste (USGS)
- •Phil Williams (as himself)
- •Jeremy Lowe (project mgr)
- •Blaine Ebberts(USACE)
- And Blaine
- •And more Blaine...

Questions and/or cocktail of choice?

Allan Whiting <u>allan@pctrask.com</u> 503.517.0705

Jeremy Lowe JLowe@esassoc.com 415.262.2304

Blaine Ebberts Blaine.D.Ebberts@usace .army.mil 503.808.4763

