Management

Greg Fuhrer S, Oregon Water Science Cent

Eco-Based Impacts

- Anadromous Fish
- Wildlife
- Sedimentation

Water Quality

- Climate Change
- Estuary
- Resident Fish
- Cultural Resources

Eco-Based Management

VS

Bookends

E1 – Natural Spring Hydrograph

Store and release water from U.S. and Canadian reservoirs to create a more **normative spring-peaking hydrograph** based on the type of water year, no system flood control, no operation specifically for power

E2 – Reservoirs as Natural Lakes

Generally hold reserves full and *pass inflows* through, no system flood control, no operation specifically for power

E3 – Summer Flows

Store water in Canadian projects during the fall and release to *augment summer flows* in U.S.

E5 – Dry Year Strategy

Store water in Canadian projects during winter/early spring to <u>augment</u> <u>spring flow</u> in lowest 20% of water years

Alternatives

Summary of Estuary Findings Iteration No. 2

- To support Eco-Based Management, a modernized treaty will need to provide just the right amount of additional spring peaking flows, while holding water in reserve for low-flow conditions in summer.
- Estuary is complex, may undergo significant changes post 2024 based on the treaty alternative selected and the specific Eco-system services targeted.
- Most navigation channel reaches will undergo more erosion than at present; shallow water habitats in some reaches will see more deposition.
- Water temperatures are cooler in the Upper Columbia and Snake, but no treaty scenario can bring temperature relief to the Estuary.
- A modern treaty that can provide the right balance of additional spring peaking flows could improve Fall Chinook habitat as well as Sturgeon Spawning below Bonneville Dam.
- Climate models point to more winter flow and less in summer. This future will direct the focus of Eco-Based Management to: acidification, hypoxia, water temperature, sediment erosion/deposition, and habitat area/quality.

Eco-Based Impacts

- Anadromous Fish
- Wildlife
- Sedimentation

Water Quality

- Climate Change
- Estuary
- Resident Fish

Cultural Resources

Estuary Work Group Results

Changes to the Treaty: Beneficial or Harmful?

- "Its Complex"...depends on time of year, location, and the Eco-System Service(s) deemed important
- Even though book ends (E1 and E2b) move the estuary toward pre-development flow conditions, today we've a *different estuary* and different *global conditions*

?

May/June

- Ocean entry conditions for yearlings
- Habitat opportunity for subyearlings
 July-September
- Estuarine hypoxia and acidification

Ocean Entry Conditions

Plume Volume vs Current Condition (70 water years of record --1929-99)

Estuary Work Group Results

Changes to the Treaty: Beneficial or Harmful?

- "Its Complex"...depends on time of year, location, and the Eco-System Service(s) deemed important
- Even though book ends (E1 and E2b) move the estuary toward pre-development flow conditions, today we've a *different estuary* and different *global conditions*

?

May/June

- Ocean entry conditions for yearlings
- Habitat opportunity for subyearlings
 July-September
- Estuarine hypoxia and acidification

Estuary Hypoxia and Acidification

Salinity Intrusion vs Current Condition (Low Flow water years of record --1929-99)

Eco-Based Impacts

- Anadromous Fish
- Wildlife
- Water Quality

Sedimentation

- Climate Change
- Estuary
- Resident Fish
- Cultural Resources

Sediment Transport Modeling

Results - Sediment Transport Comparison of Current Condition (RC-CC) vs CRT Scenarios HIGH FLOW (1997) July 1 – Aug 30

Scenario	Total Reach						Navigation Channel									
	А	В	С	D	Ε	F	G	Η	А	В	С	D	Ε	F	G	Η
2A-TC	0.5	0.7	-0.9	0.5	0.4	2.0	-0.8	0.4	0.2	0.4	0.5	0.5	0.4	0.4	0.5	0.5
2A-TT	0.4	0.6	-0.4	0.4	0.5	-1.0	17.8	2.8	0.2	0.3	0.4	0.4	0.5	0.2	0.4	0.5
2B-TC	In-Progress															
2E1 norm hydro	0.6	0.9	4.9	1.1		-1.0	103	0.1	0.9	1.8	0.8	1.4	1.1	1.0	1.4	0.5
2E2b norm res	0.5	0.8	0.7	0.7	0.8	2.5	0	0.9	0.3	0.4	0.6	0.9	0.7	0.7	0.9	0.6
2E5 dry year	In-Progress															

Alt/Comp **EROSION** is MUCH HIGHER than RC-CC (>=50%)

Alt/Comp **DEPOSITION** is MUCH HIGHER than RC-CC (>=50%)

Alt/Comp EROSION is HIGHER than RC-CC (> 30% & <50%)

Alt/Comp **DEPOSITION** is HIGHER than RC-CC (> 30% & <50%)

Alt/Comp **EROSION** is LESS than RC-CC

Alt/Comp **DEPOSITION** is LESS than RC-CC

+ Alternative/Component MORE erosion/deposition than RC-CC

- Alternative/Component LESS erosion/deposition than RC-CC

Results - Sediment Transport Comparison of Current Condition (RC-CC) vs CRT Scenarios HIGH FLOW (1997) July 1 – Aug 30

Scenario	Total Reach							Navigation Channel								
	А	В	С	D	Ε	F	G	Н	Α	В	С	D	Ε	F	G	Н
2A-TC	_			-	-	-										
2A-TT	The	The "Bookend" modeling of E1														
2B-TC	and	and E2b show us that reshaping														
2E1 norm hydro	the	he flows to deliver more peaks in 0.9 1.8 0.8 1.4 1.1 1.0 1.4 0.5														
2E2b norm res	high	nigher erosion.														
2E5 dry year																
Alt/Comp EROSION is MUCH HIGHER than RC-CC (>=50%) Alt/Comp DEPOSITION is MUCH HIGHER than RC-CC (>=50%)																
Alt/Comp EROSION is HIGHER than RC-CC (> 30% & <50%) Alt/Comp DEPOSITION is HIGHER than RC-CC (> 30% & <50%)																
Alt/Comp EROSION is LESS than RC-CC Alt/Comp DEPOSITION is LESS than RC-CC																
+ Alternative/Component MORE erosion/deposition than RC-CC - Alternative/Component LESS erosion/deposition than RC-CC Slide 13																

Results - Sediment Transport Comparison of Current Condition (RC-CC) vs CRT Scenarios HIGH FLOW (1997) July 1 – Aug 30

Scenario	Total Reach							Navigation Channel								
	Α	В	С	D	Ε	F	G	Н	Α	В	С	D	Ε	F	G	Н
2A-TC		The "Bookend" medaling of E1										1				
2A-TT		and E2b also show us that														
2B-TC	reshaping the flows to deliver															
2E1 norm hydro	0.6	0.9	4.9	1.1	1.1	-1.0	103	0.1	more peaks in Springtime will					n		
2E2b norm res	0.5	0.8	0.7	0.7	0.8	2.5	0	0.9	some reaches and habitats							
2E5 dry year	outside the navigation channel									el						
Alt/Comp EROSION is MUCH HIGHER than RC-CC (>=50%) Alt/Comp DEPOSITION is MUCH HIGHER than RC-CC (>=50%) Alt/Comp EROSION is HIGHER than RC-CC (> 30% & <50%) Alt/Comp DEPOSITION is HIGHER than RC-CC (> 30% & <50%) Alt/Comp EROSION is LESS than RC-CC Alt/Comp DEPOSITION is LESS than RC-CC																
+ Alternative/Component MORE erosion/deposition than RC-CC - Alternative/Component LESS erosion/deposition than RC-CC Slide 14																

Eco-Based Impacts

- Anadromous Fish
- Wildlife
- Sedimentation

Water Quality

- Climate Change
- Estuary
- Resident Fish
- Cultural Resources

Results: Temperature Modeling

(1941/1998)

Columbia - Hanford Reach

Alternative	Mean WT (Jul-Aug) °C	Max Daily WT ⁰C	Duration WT above 20 °C days
RC-CC	20.9	23.2	64
2A-TC	21.0	23.2	64
2A-TT*	21.5	24.0	68
2B-TC	20.9	23.2	64

Clearwater at Spalding (1941/1998)

Alternative	Mean WT (Jul-Aug) ⁰C	Max Daily WT ⁰C	Duration WT above 20 °C days
RC-CC	15.2	19.5	0
2A-TC	15.2	19.5	0
2A-TT	15.2	19.5	0
2B-TC	15.2	19.5	0

*2A-TT has lower summer flows on mainstem than other alternatives.

Results: Temperature Modeling

low flow / hot weather

Snake below Ice Harbor (1941/1998)

Alternative	Mean WT (Jul-Aug) °C	Max Daily WT ⁰C	Duration WT above 20 °C days
RC-CC	20.9	22.8	67
2A-TC	20.9	22.8	67
2A-TT	21.0	22.9	68
2B-TC	20.9	22.8	67

Columbia below Bonneville (1941/1998)

Alternative	Mean WT (Jul-Aug) ⁰C	Max Daily WT ⁰C	Duration WT above 20 °C days
RC-CC	22.4	24.5	84
2A-TC	22.4	24.6	83
2A-TT	22.6	25.0	84
2B-TC	22.4	24.7	85

Eco-Based Impacts

- Anadromous Fish
 Climate Change
- Wildlife
- Water Quality

Sedimentation

Cultural Resources

Resident Fish

Fall Chinook Rearing Habitat Sturgeon Spawning Habitat

Fall Chinook migrate as sub-yearlings and use shallow, low velocity habitats to feed in spring/summer.

Sturgeon spawn in fast moving water of various depths and are particularly successful spawning in areas below Bonneville Dam

Results: Fall Chinook Rearing Modeling Comparison of Current Condition (RC-CC) vs CRT Scenarios

Hanford Fall Chinook Rearing Area

John Day Fall Chinook Rearing Area

Results: Sturgeon Spawning Modeling Comparison of Current Condition (RC-CC) vs CRT **Scenarios**

Bonneville Dam Spawning Area The Dalles Dam Spawning Area E5 E5 E2B E2B E1 E1 2B-TC 2B-TC 2A-TT 2A-TT 2A-TC 2A-TC Change in Area Weighted Suitability 3000000 Change in Area Weighted Suitability 3000000 -1000000 0 4000000 -1000000 0

McNary Dam Spawning Area

4000000

Columbia River Treaty 2014/2024 Review U.S. Army Corps of Engineers – Bonneville Power Administration

Results: Climate Change Models Wettest Winters, Volume Distribution

U.S. Army Corps of Engineers – Bonneville Power Administration

Results: Climate Change Models comparison of Treaty Continues (2A-TC) to 2040's climate

Summary of Estuary Findings Iteration No. 2

- To support Eco-Based Management, a modernized treaty will need to provide just the right amount of additional spring peaking flows, while holding water in reserve for low-flow conditions in summer.
- Estuary is complex, may undergo significant changes post 2024 based on the treaty alternative selected and the specific Eco-system services targeted.
- Most navigation channel reaches will undergo more erosion than at present; shallow water habitats in some reaches will see more deposition.
- Water temperatures are cooler in the Upper Columbia and Snake, but no treaty scenario can bring temperature relief to the Estuary.
- A modern treaty that can provide the right balance of additional spring peaking flows could improve Fall Chinook habitat as well as Sturgeon Spawning below Bonneville Dam.
- Climate models point to more winter flow and less in summer. This future will direct the focus of Eco-Based Management to: acidification, hypoxia, water temperature, sediment erosion/deposition, and habitat area/quality.

Acknowlegements

- <u>Estuary Work Group</u>: Antonio Baptista (OHSU), Guy Gelfenbaum and Krista Jones (USGS), Rod Mortiz (USACE), Mojgan Rostaminia and Charles Seaton (OHSU)
- <u>Water Quality Work Group</u>: Temperature Team --Scott English, Geoffrey Walters, Jim Crain and Mike Schneider (USACE)
- <u>Anadromous Fish & Resident Fish Work Groups</u>: Fall Chinook and Sturgeon Habitat Team – Jim Hatten and Mike Parsley (USGS)
- <u>Climate Change Work Group:</u> –Kristian Mickelson (USACE) and Brian Kuepper (BPA)

Historical discharges

- River discharges have drastically changed over the last ~1.5 centuries
- The number, duration, and magnitude of springtime peak flows have decreased and winter flows have increased

Ocean Entry Conditions

Plume Volume vs Current Condition (70 water years of record --1929-99)

Estuary Hypoxia and Acidification

Salinity Intrusion vs Current Condition (Low Flow water years of record --1929-99)