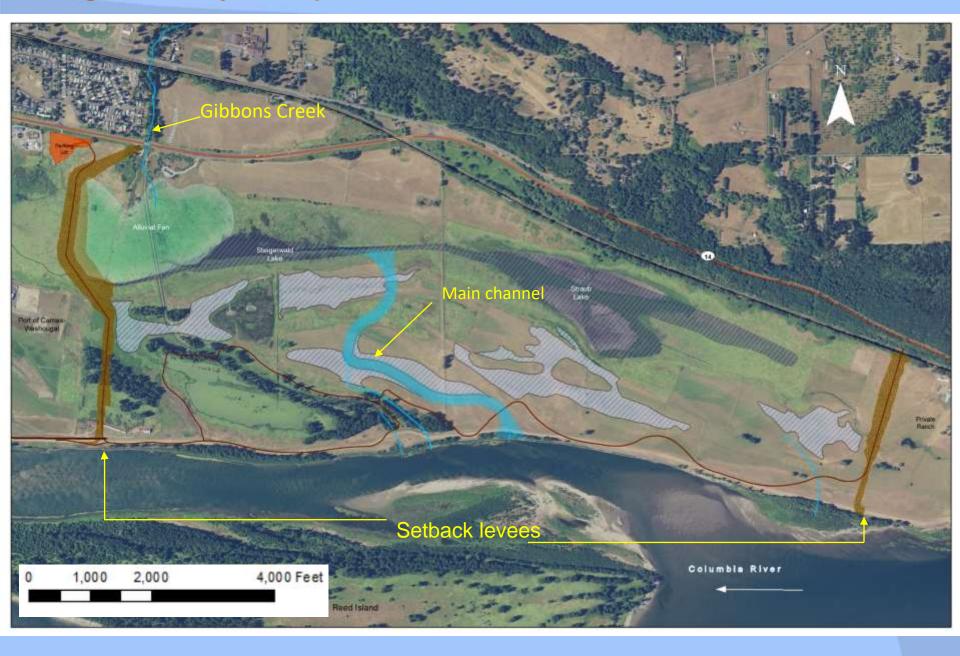
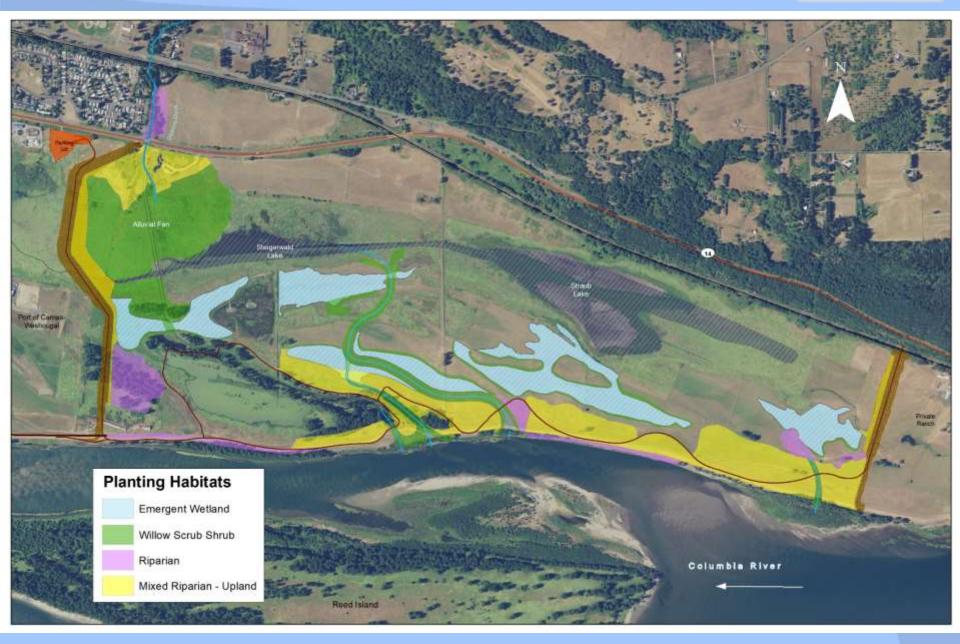
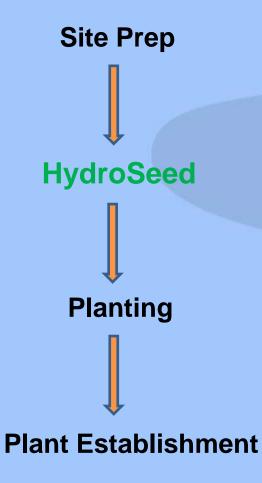
Steigerwald Reconnection Project Revegetation Efforts everything, everywhere, all at once


Lots of ground to cover...


- Planting Approach & Considerations
- Challenges
- Wapato & Wetland seeding
- Cottonwood poles
- CO₂ Emissions Mitigation



Steigerwald Project footprint

Reveg Phases

Hydroseeded >300 acres (17,000 lbs of seed)

- Timing critical: hydroseed early-mid September
- Is fertilizer always necessary?

By the numbers...

plants installed (2019 - 2023)

Bareroot trees & shrubs 461,000
Willow cuttings 164,350
Cottonwood poles 14,750
TOTAL 640,100

- 14 tree species
- 23 shrub species
- >360 lbs specialty wetland seed
- >4000 wapato tubers

Volunteer & students installed 29,063 plants to date

Species Considerations

High tolerance to hydrologic fluctuations

Common	scientific	indicator status
Spirea	Spiraea douglasii	FACW
Nootka / swamp rose	Rosa nutkana / pisocarpa	FAC
Snowberry	Symphoricarpos alba	FACU
Oregon ash	Fraxinus latifolia	FACW

Emerald ash bore

Oregon Ash substitutes:

- Cottonwood
- Willows
- Crabapple
- Oregon white oak

Species Considerations

Climate Resilient?

Common	scientific	indicator status
Ponderosa Pine	Pinus ponderosa	FACU
White Alder	Alnus rhombifolia	FAC
Incense Cedar	Calocedrus decurrens	FACU
Black Oak	Quercus kelloggii	FACU
OR Myrtle / CA Bay	Umbelluria californica	FAC

Ponderosa Pine

OR Myrtle

Black Oak

Assisted migration riparian candidates to consider??

- Box Elder
- CA Walnut
- CA Sycamore

Challenges... Everything, Everywhere, All at Once

Scale

Site Access

Hydrologic Swings

Clay Soils

Herbivory

Extreme Weather

Compaction

Weeds

Engineers

Winter 2021/2022: 352,000 plants installed across 170 ac

- Multiple Nurseries
- 2 Plant Coolers
- 2 Reveg contractors

Reefer cooler onsite

R Franco Restoration

Ash Creek Forestry Management

Limited Access

Main trail under construction during winter 2022

Marooka to the rescue

Planting Substrate

Sand & silt soils best for levee construction

Heavy clay soils on site

Lots of big equipment = compaction

Decompaction via Ripping

3 Ripping tines ~18" deep

Loosened Planting furrows

Climatic & Hydrologic Extremes

- ➤ Spring 2022 wettest on record, freshet ~7 year event
- Summer 2021 & 2022 among hottest & driest on record

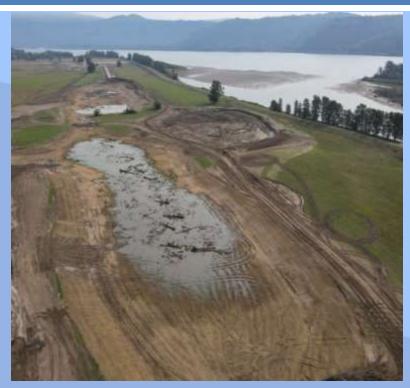
June 2022 Freshet

Sept 2022

Gibbons Creek main outflow channel

Construction completed in September 2021

Gibbons Creek main outflow channel



Specialty Wetland Seed

Common	Scientific	total
	Schoenoplectus	
Soft stem Bulrush	tabernaemontanii	82
hardstem bulrush	Schoenoplectus acutus	99
Narrow leaved burreed	Sparganium emersum	30
Giant burreed*	Sparganium eurycarpum	30
Small Fruited bulrush	Scirpus microcarpus	14
Awl fruited sedge	Carex stipata	5
Wapato*	Sagittaria latifolia	31
		365 lbs

^{*} Collected on site

Many wetlands seeds float

Distributed wetland seed across 102 acres

Pre-mixing seed & soil

Seed mud balls

Playing in the Mud...

Wapato (Sagittaria latifolia)

- Culturally significant & important first food
- Perennial plant grows edible, starchy tubers
- Footprint has declined in the Columbia Basin
- Valuable to a range of wildlife

Vegetative growth initiated from tuber in spring

Chinook Nation Wapato blessing at Steigerwald

Tuber Harvest

1 plant can produce MANY tubers

Tubers ready for harvest in late fall

Planted over 4000 Wapato tubers

Plant ~6" deep in soil, growing tip pointing up

Growing Tip

Wapato Tuber Growth Investigation

- Planted tubers in wetted pots in winter
- Excavated tubers in summer

No growing tip...no observed growth

Every severed tuber with growing tip... **Grew!**

Expanded Habitat Wetland - 3 years post construction

Cottonwood (Populus trichocarpa)


- Adapted to floods & floodplains
- Large wood, shade & roughness
- Provide aquatic & terrestrial habitat
- Fastest growing & largest hardwood in PNW

Installed 14,750 Cottonwood poles

Pole added >5ft growth in 1st growing season

Cottonwood Pole Investigations

Monthly Pole Planting Study

- Planted ~30 poles/month (Nov –March) of varying diameters to depth of 24in
- Evaluated survivorship after 1st growing season
- No observed mortality or growth differences between the months

Pole Root Development

Excavated poles after 1 growing season

Monthly pole plots set up along slope above wetland

Some roots measured >24in long

- Lateral roots will follow rip lines
- Optimal planting depth dependent on ground water (~18-24in)

CO₂ Emissions Mitigation

Project Impacts

Earthwork

1.7 mil cubic yards of earth moved 429,491 gallons of diesel fuel

CO2 released

9,706,496 lbs

Concrete

1080 CY poured for floodwall, abutments, footings

4,068,360 lbs

Steel

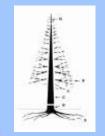
244,084 lbs for rebar structures & two bridges

583,360 lbs

14,358,216 lbs

Unaccounted: Vehicle site trips, electricity, imported large wood, gravel.

A Cruise on Queen Elizabeth II for perspective


0.0095 MPG (travels 50 ft per Gallon of Diesel)

1 Round trip London - New York (~6300 nautical miles) >>> 14,921,052 lbs. CO2 emitted

Carbon Capture

Tree Carbon Content

- generally assumed that CARBON comprises ~50% of the weight of oven-dry wood
- 1 lb of captured carbon = 3.7 lbs of CO₂ released

cottonwood

Carbon Calculator Tools for Forest Growth

- allows you to "grow" trees and/or stands to a certain age, and calculates biomass and Carbon equivalent
- Species growth rates and forest stand interactions vary across models and may need to be adjusted
- Evaluated two models: CREEC
 FVS

Carbon Riparian Ecosystem Estimator for California (CREEC)

Matzek, Stella & Ropion, 2018

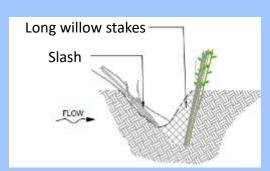
Forest Vegetation Simulator (FVS)

US Forest Service

Planted: 100 cottonwood, 100 Pacific willow, 50 Alder planted per acre; 252 acres

Age	CO2 sequestered (lbs) across 252 ac planted		
3	CREEC	FVS	
5	15,108,355	1,832,634	
10	32,271,313	6,093,433	
15	44,458,664	18,436,501	
20	51,744,670	36,394,333	
30	59,195,705	86,261,214	

Carbon Sequestration Results Summary


- Steigerwald Project released ~ 14,500,000 lbs CO2
- > Based on the two models used, plantings likely to <u>capture equivalent carbon in 8-12 years</u>.

considerations...

- Reduce imported large wood
- Incorporate emission reduction strategies in design phase

Floodplain roughness alternatives

everything, everywhere, all at once

- Be adaptive in your planting approaches and plan for multiple years
- Explore potential climate resilient, assisted migration species

dkreuzer@estuarypartnership.org

 Incorporate soil decompaction specifications into your plans

- Understand your project site's soils
- Consider CO₂ emission reduction strategies during the design phase

