

Tidal-Hydrological Dynamics of Water Temperature across Freshwater Forested Wetlands

May 17, 2023

Kate Buenau¹, Heida Diefenderfer^{1,2}, Amy Borde¹

¹Pacific Northwest National Laboratory ²U. of Washington School of Natural Resources

PNNL is operated by Battelle for the U.S. Department of Energy

Context

Widespread loss of tidal freshwater wetlands impedes understanding of their past and future role as habitat and temperature refugia

Research Questions

- 1. Are there temperature differences between the interior and exterior of tidal forests?
- 2. If so, what is the rate of change along the channel?
- 3. Are temperatures inside tidal forests different from
 - a. The mainstem?
 - b. A nearby emergent marsh?
 - c. A recently reconnected restoration site?
- 4. How does tidal hydrology affect temperatures?
- 5. How do site and landscape features affect temperatures?

Buenau, Diefenderfer and Borde, in review. Tidal-hydrological dynamics of water temperature across freshwater forested wetlands on the northeastern Pacific coast. JAWRA.

Study Area

Tidal forests: Secret River (bay) Crooked Creek (bay) Seal Slough (trib.)

Emergent marsh: Secret River (bay)

Restoration site: Kandoll Farm (trib.)

Data Collection

Temperature and water level Temperature only

-

Data available

Some air-exposed data removed

2006 2007 8 91011121 2 3 4 5 6 7 8 9 Secret River Upper Upper mid **Upper mid WSE** Mid sun Mid shade Edge of swamp Outside Secret River Marsh Crooked Creek Upper Upper mid shade Upper mid sun Mid Lower mid Confluence Outside Seal Slough Upper Upper mid Mid Confluence Edge Outside Kandoll Farm Upper Mid shade Mid sun Confluence Grays River **Grays R. Upstream**

101112)08 2	4	5	6	7	8
2						i
_						
		P				

Methods

Weekly metrics:

- Median temperature
- Average maximum temperature
- Temperature range (90th–10th percentile)

Regression covariates:

- Month
- Mean water surface elevation (WSE; Astoria)
- Tidal range (Astoria)

Analyses:

- Regression: inside outside, each site
- Gradient: change in temperature per 100 m along channel
- **Regression: site mainstem**

Maximum temperatures are cooler in bay sites **Seal Slough can be warmer inside**

Pacific

Northwest

Seal Slough is more variable inside than out, especially at high tidal range

Pacific

Northwest

Temperature gradients

Pacific Northwest

Mean change per 100m up channel:

Secret River: -0.07°

Crooked Creek: -0.17°

Seal Slough: -0.16° to 0.25°

Kandoll Farm: -0.08°

Differences between sites (maximum temp.)

- All sites cooler than tidal marsh
- cooler than mainstem in late summer and fall
- Grays River sites ≤ Grays Bay sites
- Fewer hydrological effects when comparing sites than within sites

Difference between site and mainstem

How do water temperatures in tidal forests compare to other wetland types?

- Hydrologic connectivity
- Vegetation cover
- Watershed input
- ~40 sites throughout LCRE

Weekly maximum

Effect of wetland type controlling for month, rkm, and hydrology

Tidal forests are cooler than fringing and protected marshes, moderately variable

Weekly median

Tributary marsh -Protected marsh -Fringing marsh -Forest/shrub -1.0 Site -Weekly range

Summary—temperature patterns

- Tidal forests have cooler water temperatures than the emergent marsh and sometimes the mainstem
- Notable cooling effect of tributary on tidal forest temperature
- Grays Bay sites had -0.07° to -0.16° cooling per 100m upstream, on average
- Forested sites did not reduce temperature range as seen in non-tidal forested wetlands
- Sites had similar median temperatures, but different maximum and range

Summary—role of environment and hydrology

- The recently-reconnected site had very small effects on temperature ($< 0.5^{\circ}$)
- Site size and upland watersheds likely affected temperatures
- Hydrology affected differences within sites more than between sites
- Tidal range mattered in warm months for Seal Slough and Crooked Creek

Management implications

- Tidal forests had maximum temperatures cooler than emergent marshes by 4-6° C during warm, high-stress months for juvenile salmonids
- Strong seasonality of temperature differences suggest role of tidal forests will vary by life history strategy
- Sites on tributaries provide additional cooling benefits that may justify additional distance from mainstem
- Effects of tidal hydrology to enhance or reduce cooling likely depends on site morphology, e.g., extent of shallow water and overbank flow

Temperature mediation is a compelling justification for widespread restoration of tidal forests and tributary wetlands

Thank you!

University of Washington: K. Ewing, D.R. Montgomery, J.R. Skalski, R.M. Thom, and K.A. Vogt

Columbia Land Trust: Ian Sinks

PNNL: Shon Zimmerman, Zach Weller

Data collection was partly supported by the U.S. Army Corps of Engineers (USACE) Pacific Northwest Division Anadromous Fish Evaluation Program (study code EST-P-02-04) and partly conducted independently by the authors.

Statistical analysis was supported by Bonneville Power Administration (project 2002-077-00).